Ir al contenido

Documat


The Green ring of a family of copointed Hopf algebras

  • Cristian Vay [1]
    1. [1] Facultad de Matem´atica, Astronom´ıa, F´ısica y Computaci´on, Universidad Nacional de C´ordobaArgentina
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 1, 2025, págs. 23-48
  • Idioma: inglés
  • DOI: 10.33044/revuma.3622
  • Enlaces
  • Resumen
    • The copointed liftings of the Fomin–Kirillov algebra FK3 over the algebra of functions on the symmetric group S3 were classified by Andruskiewitsch and the author. We demonstrate here that those associated to a generic parameter are Morita equivalent to the regular blocks of well-known Hopf algebras: the Drinfeld doubles of the Taft algebras and the small quantum groups uq(sl2). The indecomposable modules over these were classified independently by Chen, Chari–Premet and Suter. Consequently, we obtain the indocomposable modules over the generic liftings of FK3. We decompose the tensor products between them into the direct sum of indecomposable modules. We then deduce a presentation by generators and relations of the Green ring.

  • Referencias bibliográficas
    • N. Andruskiewitsch, I. Angiono, A. García Iglesias, B. Torrecillas, and C. Vay, From Hopf algebras to tensor categories, in Conformal field...
    • N. Andruskiewitsch and H.-J. Schneider, Hopf algebras of order p² and braided Hopf algebras of order p, J. Algebra 199 no. 2 (1998), 430–454....
    • N. Andruskiewitsch and C. Vay, Finite dimensional Hopf algebras over the dual group algebra of the symmetric group in three letters, Comm....
    • N. Andruskiewitsch and C. Vay, On a family of Hopf algebras of dimension 72, Bull. Belg. Math. Soc. Simon Stevin 19 no. 3 (2012), 415–443....
    • V. Chari and A. Premet, Indecomposable restricted representations of quantum sl₂, Publ. Res. Inst. Math. Sci. 30 no. 2 (1994), 335–352. DOI...
    • H.-X. Chen, Irreducible representations of a class of quantum doubles, J. Algebra 225 no. 1 (2000), 391–409. DOI MR Zbl
    • H.-X. Chen, Finite-dimensional representations of a quantum double, J. Algebra 251 no. 2 (2002), 751–789. DOI MR Zbl
    • H.-X. Chen, Representations of a class of Drinfeld’s doubles, Comm. Algebra 33 no. 8 (2005), 2809–2825. DOI MR Zbl
    • H.-X. Chen, The Green ring of Drinfeld double D(H₄), Algebr. Represent. Theory 17 no. 5 (2014), 1457–1483. DOI MR Zbl
    • H. Chen, F. Van Oystaeyen, and Y. Zhang, The Green rings of Taft algebras, Proc. Amer. Math. Soc. 142 no. 3 (2014), 765–775. DOI MR Zbl
    • J. Chen, S. Yang, and D. Wang, Grothendieck rings of a class of Hopf algebras of Kac–Paljutkin type, Front. Math. China 16 no. 1 (2021), 29–47....
    • C. Cibils, A quiver quantum group, Comm. Math. Phys. 157 no. 3 (1993), 459–477. MR Zbl Available at http://projecteuclid.org/euclid.cmp/1104254018.
    • K. Erdmann, E. L. Green, N. Snashall, and R. Taillefer, Representation theory of the Drinfeld doubles of a family of Hopf algebras, J. Pure...
    • K. Erdmann, E. L. Green, N. Snashall, and R. Taillefer, Stable green ring of the Drinfeld doubles of the generalised Taft algebras (corrections...
    • P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, Mathematical Surveys and Monographs 205, American Mathematical Society,...
    • The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.12.0, 2022. Available at https://www.gap-system.org.
    • A. García Iglesias, Representations of finite dimensional pointed Hopf algebras over S₃, Rev. Un. Mat. Argentina 51 no. 1 (2010), 51–77. MR...
    • J. A. Green, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607–619. DOI MR Zbl
    • H.-L. Huang, F. Van Oystaeyen, Y. Yang, and Y. Zhang, The Green rings of pointed tensor categories of finite type, J. Pure Appl. Algebra 218...
    • H. Kondo and Y. Saito, Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra...
    • L. Li and Y. Zhang, The Green rings of the generalized Taft Hopf algebras, in Hopf algebras and tensor categories, Contemp. Math. 585, American...
    • Y. Li and N. Hu, The Green rings of the 2-rank Taft algebra and its two relatives twisted, J. Algebra 410 (2014), 1–35. DOI MR Zbl
    • B. Pogorelsky and C. Vay, On the representation theory of the Drinfeld double of the Fomin–Kirillov algebra FK₃, Algebr. Represent. Theory...
    • P. Schauenburg, Hopf bi-Galois extensions, Comm. Algebra 24 no. 12 (1996), 3797–3825. DOI MR Zbl
    • H. Sun, H. S. E. Mohammed, W. Lin, and H.-X. Chen, Green rings of Drinfeld doubles of Taft algebras, Comm. Algebra 48 no. 9 (2020), 3933–3947....
    • R. Suter, Modules over Uq(sl₂), Comm. Math. Phys. 163 no. 2 (1994), 359–393. MR Zbl Available at http://projecteuclid.org/euclid.cmp/1104270468.
    • D. Tambara and S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra 209 no. 2 (1998), 692–707....
    • M. Wakui, On representation rings of non-semisimple Hopf algebras of low dimension (Japanese), in Proceedings of the 35th Symposium on Ring...
    • S. J. Witherspoon, The representation ring of the quantum double of a finite group, J. Algebra 179 no. 1 (1996), 305–329. DOI MR Zbl
    • S. J. Witherspoon, The representation ring of the twisted quantum double of a finite group, Canad. J. Math. 48 no. 6 (1996), 1324–1338. DOI...
    • R. Yang and S. Yang, The Grothendieck rings of Wu–Liu–Ding algebras and their Casimir numbers (II), Comm. Algebra 49 no. 5 (2021), 2041–2073....
    • R. Yang and S. Yang, Representations of a non-pointed Hopf algebra, AIMS Math. 6 no. 10 (2021), 10523–10539. DOI MR Zbl
    • R. Yang and S. Yang, The Grothendieck rings of Wu–Liu–Ding algebras and their Casimir numbers (I), J. Algebra Appl. 21 no. 9 (2022), article...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno