Ir al contenido

Documat


On the barcode entropy of Reeb flows

  • Erman Çineli [1] ; Viktor L. Ginzburg [3] ; Başak Z. Gürel [4] ; Marco Mazzucchelli [2]
    1. [1] Swiss Federal Institute of Technology in Zurich

      Swiss Federal Institute of Technology in Zurich

      Zürich, Suiza

    2. [2] Centre National de la Recherche Scientifique

      Centre National de la Recherche Scientifique

      París, Francia

    3. [3] Department of Mathematics, UC Santa Cruz, USA
    4. [4] Department of Mathematics, UCF, Orlando, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01062-5
  • Enlaces
  • Resumen
    • In this paper we continue investigating connections between Floer theory and dynamics of Hamiltonian systems, focusing on the barcode entropy of Reeb flows. Barcode entropy is the exponential growth rate of the number of not-too-short bars in the Floer or symplectic homology persistence module. The key novel result is that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set. This, combined with the fact that the topological entropy bounds the barcode entropy from above, established by Fender, Lee and Sohn, implies that in dimension three the two types of entropy agree. The main new ingredient of the proof is a variant of the Crossing Energy Theorem for Reeb flows.

  • Referencias bibliográficas
    • Abbondandolo, A., Alves, M.R.R., Sa ˘glam, M., Schlenk, F.: Entropy collapse versus entropy rigidity for Reeb and Finsler flows. Selecta Math....
    • Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Comm. Pure Appl. Math. 59, 254–316 (2006)
    • Allais, S.: On periodic points of Hamiltonian diffeomorphisms of CPd via generating functions. J. Symplectic Geom. 20, 1–48 (2022)
    • Alves, M.R.R.: Cylindrical contact homology and topological entropy. Geom. Topol. 20, 3519–35692 (2016)
    • Alves, M.R.R.: Legendrian contact homology and topological entropy. J. Topol. Anal. 11, 53–108 (2019)
    • Alves, M.R.R., Colin, V., Honda, K.: Topological entropy for Reeb vector fields in dimension three via open book decompositions. J. Éc. polytech....
    • Alves, M.R.R., Dahinden, L., Meiwes, M., Merlin, L.: C0-Robustness of topological entropy for geodesic flows, J. Fixed Point Theory Appl.,...
    • Alves, M.R.R., Dahinden, L., Meiwes, M., Pirnapasov, A.: C0-stability of topological entropy for Reeb flows in dimension 3, Preprint arXiv:2311.12001
    • Alves, M.R.R., Meiwes, M.: Dynamically exotic contact spheres in dimensions ≥ 7. Comment. Math. Helv. 94, 569–622 (2019)
    • Alves, M.R.R., Pirnapasov, A.: Reeb orbits that force topological entropy. Ergodic Theory Dynam. Systems 42, 3025–3068 (2022)
    • Asaoka, M.: Abundance of fast growth of the number of periodic points in 2-dimensional area-preserving dynamics. Comm. Math. Phys. 356, 1–17...
    • Avila, A., Crovisier, S., Wilkinson, A.: C1 density of stable ergodicity. Adv. Math. 379, 107496 (2021)
    • Barut, E., Ginzburg, V.L.: Barcode growth for toric-integrable Hamiltonian systems, Preprint arXiv:2503.08922
    • Batoréo, M.: On hyperbolic points and periodic orbits of symplectomorphisms. J. Lond. Math. Soc. (2) 91, 249–265 (2015)
    • Batoréo, M.: On non-contractible hyperbolic periodic orbits and periodic points of symplectomorphisms. J. Symplectic Geom. 15, 687–717 (2017)
    • Bourgeois, F.: A Morse–Bott approach to contact homology. In: Symplectic and contact topology: Interactions and perspectives (Toronto, ON/Montreal,...
    • Bramham, B.: Pseudo-rotations with sufficiently Liouvillean rotation number are C0-rigid. Invent. Math. 199, 561–580 (2015)
    • Bubenik, P., Vergili, T.: Topological spaces of persistence modules and their properties. J. Appl. Comput. Topol. 2, 233–269 (2018)
    • Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.: Persistence barcodes for shapes. Int. J. Shape Model. 11, 149–187 (2005)
    • Cieliebak, K., Floer, A., Hofer, H.: Symplectic homology II: A general construction. Math. Zeit. 218, 103–122 (1995)
    • Çineli, E.: A generalized pseudo-rotation with positive topological entropy. Bull. Lond. Math. Soc. (2025). https://doi.org/10.1112/blms.70021
    • Çineli, E., Ginzburg, V.L., Gürel, B.Z.: Topological entropy of Hamiltonian diffeomorphisms: A persistence homology and Floer theory perspective....
    • Çineli, E., Ginzburg, V.L., Gürel, B.Z.: On the growth of the Floer barcode. J. Mod. Dyn. 20, 275–298 (2024). https://doi.org/10.3934/jmd.2024007
    • Çineli, E., Ginzburg, V.L., Gürel, B.Z.: On the generic behavior of the spectral norm. Pacific J. Math. 328(1), 119–135 (2024). https://doi.org/10.2140/pjm.2024.328-119
    • Çineli, E., Ginzburg, V.L., Gürel, B.Z.: Closed orbits of dynamically convex Reeb flows: Towards the HZ- and multiplicity conjectures, Preprint...
    • Çineli, E., Ginzburg, V.L., Gürel, B.Z., Mazzucchelli, M.: Invariant sets and hyperbolic closed Reeb orbits, Preprint arXiv:2309.04576
    • Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(5), 1550066 (2015)
    • Cristofaro-Gardiner, D., Prasad, R.: Low-action holomorphic curves and invariant sets, Preprint arXiv:2401.14445
    • Dinaburg, E.I.: A connection between various entropy characterizations of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 35, 324–366 (1971)
    • Fender, E., Lee, S., Sohn, B.: Barcode entropy for Reeb flows on contact manifolds with exact Liouville fillings. Comm. Contemp. Math. (2025)....
    • Fernandes, R.: Barcode entropy and wrapped Floer homology, Preprint arXiv:2410.05528
    • Fernandes, R.: Wrapped Floer homology and hyperbolic sets, Preprint arXiv:2501.06654
    • Fish, J.W.: Target-local Gromov compactness. Geom. Topol. 15, 765–826 (2011)
    • Fisher, T., Hasselblatt, B.: Hyperbolic Flows, Zurich Lectures in Advanced Mathematics. European Mathematical Society, Berlin (2019)
    • Frauenfelder, U., Schlenk, F.: Hamiltonian dynamics on convex symplectic manifolds. Israel J. Math. 15, 1–56 (2006)
    • Ginzburg, V.L., Gürel, B.Z.: Hyperbolic fixed points and periodic orbits of Hamiltonian diffeomorphisms. Duke Math. J. 163, 565–590 (2014)
    • Ginzburg, V.L., Gürel, B.Z.: Non-contractible periodic orbits in Hamiltonian dynamics on closed symplectic manifolds. Compos. Math. 152, 1777–1799...
    • Ginzburg, V.L., Gürel, B.Z.: Hamiltonian pseudo-rotations of projective spaces. Invent. Math. 214, 1081–1130 (2018)
    • Ginzburg, V.L., Gürel, B.Z.: Lusternik-Schnirelmann theory and closed Reeb orbits. Math. Z. 295, 515–582 (2020)
    • Ginzburg, V.L., Gürel, B.Z., Mazzucchelli, M.: Barcode entropy of geodesic flows. J. Eur. Math. Soc. (JEMS). https://doi.org/10.4171/JEMS/1572
    • Kaloshin, V.: An extension of the Artin-Mazur theorem. Ann. of Math. (2) 150, 729–741 (1999)
    • Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 51, 137–173 (1980)
    • Katok, A.: Entropy and closed geodesics. Ergodic Theory Dynam. Systems 2, 339–365 (1982)
    • Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. With a supplementary chapter by A. Katok and Mendoza....
    • Lian, Z., Young, L.-S.: Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces. J. Amer. Math. Soc. 25, 637–665...
    • Lima, Y., Sarig, O.M.: Symbolic dynamics for three-dimensional flows with positive topological entropy. J. Eur. Math. Soc. (JEMS) 21, 199–256...
    • Macarini, L., Schlenk, F.: Positive topological entropy of Reeb flows on spherizations. Math. Proc. Cambridge Philos. Soc. 151, 103–128 (2011)
    • Meiwes, M.: Rabinowitz Floer Homology, Leafwise Intersections, and Topological Entropy, Inaugural Dissertation zur Erlangung der Doktorwürde...
    • Meiwes, M.: On the barcode entropy of Lagrangian submanifolds, Preprint arXiv:2401.07034
    • Paternain, G.P.: Geodesic Flows, Progress in Mathematics, vol. 180. Birkhäuser Boston, Inc., Boston, MA (1999)
    • Topological Persistence in Geometry and Analysis, University Lecture Series, vol. 74, Amer. Math. Soc., Providence, RI (2020)
    • Salamon, D.A.: Morse theory, the Conley index and Floer homology. Bull. Lond. Math. Soc. 22, 113–140 (1990)
    • Salamon, D.A.: Lectures on Floer homology. In: Symplectic Geometry and Topology, IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence,...
    • Salamon, D.A., Weber, J.: Floer homology and the heat flow. Geom. Funct. Anal. 16, 1050–1138 (2006)
    • Sikorav, J.-C.: Some properties of holomorphic curves in almost complex manifolds. In: Holomorphic curves in symplectic geometry, pp. 165–189;...
    • Viterbo, C.: Functors and computations in Floer cohomology, I. Geom. Funct. Anal. 9, 985–1033 (1999)
    • Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79. Springer-Verlag, New York-Berlin (1982)
    • Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno