Ir al contenido

Documat


A generalization of Voevodsky’s reconstruction theorem of schemes from their étale topoi

  • Magnus Carlson [1] ; Peter J. Haine [2] ; Sebastian Wolf [3]
    1. [1] Goethe University Frankfurt

      Goethe University Frankfurt

      Frankfurt, Alemania

    2. [2] University of California System

      University of California System

      Estados Unidos

    3. [3] University of Regensburg

      University of Regensburg

      Kreisfreie Stadt Regensburg, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01054-5
  • Enlaces
  • Resumen
    • Let k be a field that is finitely generated over its prime field. In Grothendieck’s anabelian letter to Faltings, he conjectured that sending a k-scheme to its étale topos defines a fully faithful functor from the localization of the category of finite type k-schemes at the universal homeomorphisms to a category of topoi. By extending results of Voevodsky, we prove Grothendieck’s conjecture for infinite finitely generated fields of arbitrary characteristic. In characteristic 0, this shows that seminormal finite type kschemes can be reconstructed from their étale topoi, generalizing work of Voevodsky. In positive characteristic, this shows that perfections of finite type k-schemes can be reconstructed from their étale topoi.

  • Referencias bibliográficas
    • Barwick, C.: Topological rigidification of schemes (2010). arXiv:1012.1889
    • Bhatt, B., Scholze, P.: Projectivity of the Witt vector affine Grassmannian. Invent. Math. 209(2), 329–423 (2017). https://doi.org/10.1007/s00222-016-0710-4....
    • Borceux, F.: Handbook of Categorical Algebra. 1 (Encyclopedia of Mathematics and its Applications). Cambridge University Press, Cambridge,...
    • Carlson, M., Stix, J.: The étale topos reconstructs varieties over sub-p-adic fields (2024). arXiv:2410.22474
    • Görtz, U., Wedhorn, T.: Algebraic geometry I. Schemes—with examples and exercises (Springer Studium Mathematik—Master), Second. Springer Spektrum,...
    • Grothendieck, A.: Brief an G. Faltings, in Geometric Galois actions, 1, London Math. Soc. LectureNote Ser. Vol. 242, Cambridge: Cambridge...
    • Guralnick, R., Jaffe, D.B., Raskind, W., Wiegand, R.: On the Picard group: Torsion and the kernel induced by a faithfully flat map. J. Algebra...
    • Haine, P.J., Holzschuh, T., Wolf, S.: The fundamental fiber sequence in étale homotopy theory. Int. Math. Res. Not. IMRN 2024(1), 175–196...
    • Hoyois, M., Kelly, S., Østvar, P.A.: The motivic Steenrod algebra in positive characteristic. J. Eur. Math. Soc. 19(12), 3813–3849 (2017)....
    • Illusie, L.: On Gabber’s refined uniformization, 2009, Talks at the University of Tokyo, Jan. 17, 22, 31, 2008. https://www.imo.universite-paris-saclay.fr/~luc.illusie/refined_uniformization3.pdf
    • Illusie, L., Laszlo, Y., Orgogozo, F. (eds.) Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents....
    • Lang, S.: Fundamentals of Diophantine geometry. Springer-Verlag, New York, 1983, pp. xviii+370, ISBN: 0-387-90837-4. https://doi.org/10.1007/978-1-4757-1810-2
    • Lu, Q., Zheng, W.: Duality and nearby cycles over general bases. Duke Math. J. 168(16), 3135–3213 (2019). https://doi.org/10.1215/00127094-2019-0057....
    • Lurie, J.: Higher topos theory (Annals of Mathematics Studies). Princeton University Press, Princeton, NJ, 2009, vol. 170, pp. xviii+925,...
    • Lurie, J.: Higher algebra (2017). http://www.math.ias.edu/~lurie/papers/HA.pdf
    • Lurie, J.: Ultracategories (2018). http://www.math.ias.edu/~lurie/papers/Conceptual.pdf
    • Rydh, D.: Submersions and effective descent of étale morphisms. Bull. Soc. Math. France 138(2), 181–230 (2010). https://doi.org/10.24033/bsmf.2588....
    • Stix, J.: Projective anabelian curves in positive characteristic and descent theory for log-étale covers (Bonner Mathematische Schriften)....
    • Temkin, M.: Tame distillation and desingularization by p-alterations. Ann. Math. (2) 186(1), 97–126 (2017). https://doi.org/10.4007/annals.2017.186.1.3....
    • The Stacks Project Authors, Stacks project (2024)
    • Théorie des topos et cohomologie étale des schemas. Tome 1: Théorie des topos (Séminaire de Géométrie Algébrique du Bois Marie 1963.64 (SGA...
    • Théorie des topos et cohomologie étale des schemas. Tome 2 (Séminaire de Géométrie Algébrique du Bois Marie 1963.64 (SGA 4). Dirigé par M....
    • Voevodski˘ı, V.A.: Étale topologies of schemes over fields of finite type over Q. Izv. Akad. Nauk SSSR Ser. Mat. 54(6), 1155–1167 (1990)....
    • Voevodsky, V.: Homology of schemes and covariant motives. ProQuest LLC, Ann Arbor, MI, 1992, p. 64, Thesis (Ph.D.)—Harvard University
    • Voevodsky, V.: Homology of schemes. Sel. Math. (N.S.) 2(1), 111–153 (1996). https://doi.org/10.1007/BF01587941

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno