Ir al contenido

Documat


Virtual Cartier divisors and blow-ups

  • Adeel A. Khan [2] ; David Rydh [1]
    1. [1] Royal Institute of Technology

      Royal Institute of Technology

      Suecia

    2. [2] Institute of Mathematics, Academia Sinica, Taiwan
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01060-7
  • Enlaces
  • Resumen
    • We prove a universal property for blowups in regularly immersed subschemes, based on a notion we call “virtual effective Cartier divisor”. We also construct blow-ups of quasi-smooth closed immersions in derived algebraic geometry

  • Referencias bibliográficas
    • Arinkin, D., Gaitsgory, D.: Singular support of coherent sheaves and the geometric Langlands conjecture. Sel. Math., New Ser., 21(1):1–199,...
    • Annala, T.: Bivariant derived algebraic cobordism. J. Algebr. Geom. 30(2), 205–252 (2021)
    • Annala, T.: Precobordism and cobordism. Algebra Number Theory 15(10), 2571–2646 (2021)
    • Annala, T.: Algebraic Spivak’s theorem and applications. Geom. Topol. 27(1), 351–396 (2023)
    • Berthelot, P., Grothendieck, A., Illusie, L.: Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorème...
    • Bachmann, T., Khan, Adeel A. Ravi, C., Sosnilo, V.: Categorical Milnor squares and K-theory of algebraic stacks. Selecta Math. (N.S.), 28(5):Paper...
    • Bragg, D., Olsson, M.: Representability of cohomology of finite flat abelian group schemes. arXiv preprint arXiv:2107.11492, (2021)
    • Cesnavičius, K., Scholze, P.: Purity for flat cohomology. Ann. Math. (2), 199(1):51–180, (2024)
    • Grothendieck, A.: Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, volume 32....
    • Hekking, J.: Graded algebras, projective spectra and blow-ups in derived algebraic geometry. arXiv preprint arXiv:2106.01270, (2021)
    • Hekking, J., Khan, Adeel A. Rydh, D.: Deformation to the normal cone and blow-ups via derived Weil restrictions. In preparation
    • Illusie, L.: From Pierre Deligne’s secret garden: looking back at some of his letters. Jpn. J. Math. 10(2), 237–248 (2015)
    • Khan, A.A.: Virtual fundamental classes of derived stacks I. arXiv preprint arXiv:1909.01332, (2019)
    • Khan, A.A.: Algebraic K-theory of quasi-smooth blow-ups and cdh descent. Ann. H. Lebesgue 3, 1091–1116 (2020)
    • Khan, A.A.: K-theory and G-theory of derived algebraic stacks. Jpn. J. Math. 17(1), 1–61 (2022)
    • Kerz, M., Strunk, F. Tamme, G.: Algebraic K-theory and descent for blow-ups. Invent. Math. 211(2), 523–577 (2018)
    • Lurie, J.: Spectral algebraic geometry. Preprint, available at www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf. Version of 2018-02-03
    • Lurie, J.: Higher topos theory, volume 170. Princeton University Press, (2009)
    • Micali, A.: Sur les algèbres universelles. Ann. Inst. Fourier (Grenoble), 14(fasc. 2):33–87, (1964)
    • Olsson, M.: Algebraic spaces and stacks, volume 62. American Mathematical Soc., (2016)
    • Rydh, D.: The canonical embedding of an unramified morphism in an étale morphism. Math. Z. 268(3–4), 707–723 (2011)
    • The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu
    • Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Amer. Math. Soc., 193(902):x+224, (2008)
    • Verdier, J.-L.: Le théorème de Riemann-Roch pour les intersections complètes. In Séminaire de géométrie analytique (École Norm. Sup., Paris,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno