Ir al contenido

Documat


Lagrangian split tori in S2 × S2 and billiards

  • Joé Brendel [1] ; Joontae Kim [2]
    1. [1] Swiss Federal Institute of Technology in Zurich

      Swiss Federal Institute of Technology in Zurich

      Zürich, Suiza

    2. [2] Sogang University

      Sogang University

      Corea del Sur

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01068-z
  • Enlaces
  • Resumen
    • In this paper, we classify up to Hamiltonian isotopy Lagrangian tori that split as a product of circles in S2 × S2, when the latter is equipped with a non-monotone split symplectic form. We show that this classification is equivalent to a problem of mathematical billiards in rectangles.We give many applications, among others: (1) answering a question on Lagrangian packing numbers raised by Polterovich–Shelukhin, (2) studying the topology of the space of Lagrangian tori, and (3) determining which split tori are images under symplectic ball embeddings of Chekanov or product tori in R4.

  • Referencias bibliográficas
    • Abreu, M.: Topology of symplectomorphism groups of S2 × S2. Invent. Math. 131(1), 1–23 (1998)
    • ChatGPT Plus Aquí están las referencias separadas con dos espacios y sin los números:
    • Abreu, M., Borman, M.S., McDuff, D.: Displacing Lagrangian toric fibers by extended probes. Algebr. Geom. Topol. 14(2), 687–752 (2014)
    • Augustynowicz, M., Smith, J., Wornbard, J.: Homological Lagrangian monodromy for some monotone tori. to appear in Quantum Topol, (2024)
    • Auroux, D.: Mirror symmetry and T -duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. GGT 1, 51–91 (2007)
    • Biran, P.: Symplectic packing in dimension 4. Geom. Funct. Anal. 7(3), 420–437 (1997)
    • Brendel, J.: An introduction to the Chekanov torus. In Proceedings of the Gökova Geometry-Topology Conference 2021, pages 1–56. Int. Press,...
    • Brendel, J.: Hamiltonian classification of toric fibres and symmetric probes. Algebr. Geom. Topol. 25(3), 1839–1876 (2025)
    • Brendel, J.: Local exotic tori. Trans. Amer. Math. Soc. 378(6), 4369–4411 (2025)
    • Brendel, J., Hauber, J., Schmitz, J.: Semi-Local Exotic Lagrangian Tori in Dimension Four. to appear in Annales de l’Institut Fourier, (2024)
    • Bro´ci´c, F., Shelukhin, E.: A counterexample to Lagrangian Poincaré recurrence. arXiv:2409.14225, (2024)
    • Chassé, J.-P., Leclercq, R.: Weinstein exactness of nearby Lagrangians and the Lagrangian C0 flux conjecture. arXiv:2410.04158, (2024)
    • Chekanov, Y.: Lagrangian tori in a symplectic vector space and global symplectomorphisms. Math. Z. 223(4), 547–559 (1996)
    • Chekanov, Y., Schlenk, F.: Notes on monotone Lagrangian twist tori. Electron. Res. Announc. Math. Sci. 17, 104–121 (2010)
    • Chekanov, Y., Schlenk, F.: Lagrangian product tori in symplectic manifolds. Comment. Math. Helv. 91(3), 445–475 (2016)
    • Dimitroglou Rizell, G., Goodman, E., Ivrii, A.: Lagrangian isotopy of tori in S2 × S2 and CP2. Geom. Funct. Anal. 26(5), 1297–1358 (2016)
    • Eliashberg, Y., Polterovich, L.: The problem of Lagrangian knots in four-manifolds. In Geometric topology (Athens, GA, 1993), volume 2 of...
    • Entov, M., Polterovich, L.: Quasi-states and symplectic intersections. Comment. Math. Helv. 81(1), 75–99 (2006)
    • Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds. I. Duke Math. J. 151(1), 23–174 (2010)
    • Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Displacement of polydisks and Lagrangian Floer theory. J. Symplectic Geom. 11(2), 231–268 (2013)
    • Ginzburg, V.L., Gürel, B.Z.: Hamiltonian pseudo-rotations of projective spaces. Invent. Math. 214(3), 1081–1130 (2018)
    • Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)
    • Hu, S., Lalonde, F., Leclercq, R.: Homological Lagrangian monodromy. Geom. Topol. 15(3), 1617–1650 (2011)
    • Karshon, Y.: Maximal tori in the symplectomorphism groups of Hirzebruch surfaces. Math. Res. Lett. 10(1), 125–132 (2003)
    • Lalonde, F., McDuff, D.: The classification of ruled symplectic 4-manifolds. Math. Res. Lett. 3(6), 769–778 (1996)
    • Lou, H.: On Lagrangian Tori in S2 × S2. arXiv:2412.16356, (2024)
    • Mak, C.Y., Smith, I.: Non-displaceable Lagrangian links in four-manifolds. Geom. Funct. Anal. 31(2), 438–481 (2021)
    • McDuff, D.: From symplectic deformation to isotopy. In Topics in symplectic 4-manifolds (Irvine, CA, 1996), First Int. Press Lect. Ser., I,...
    • McDuff, D.: Displacing Lagrangian toric fibers via probes. In Low-dimensional and symplectic topology, volume 82 of Proc. Sympos. Pure Math.,...
    • McDuff, D., Salamon, D.: Introduction to symplectic topology. Oxford Graduate Texts in Mathematics, 3rd edn. Oxford University Press, Oxford...
    • Ono, K.: Some remarks on Lagrangian tori. J. fixed point theory appl. 17(1), 221–237 (2015)
    • Polterovich, L., Shelukhin, E.: Lagrangian configurations and Hamiltonian maps. Compos. Math. 159(12), 2483–2520 (2023)
    • Schmitz, J.: A counterexample to Lagrangian Poincaré recurrence in dimension four. arXiv:2410.24102, (2024)
    • Shelukhin, E., Tonkonog, D., Vianna, R.: Geometry of symplectic flux and Lagrangian torus fibrations. J. Topol., 17(4):Paper No. e70002, 56,...
    • Symington, M.: Four dimensions from two in symplectic topology. In Topology and geometry of manifolds (Athens, GA, 2001), volume 71 of Proc....
    • Vianna, R.: Infinitely many monotone Lagrangian tori in del Pezzo surfaces. Selecta Math. (N.S.) 23(3), 1955–1996 (2017)
    • Welschinger, J.-Y.: Effective classes and Lagrangian tori in symplectic four-manifolds. J. Symplectic Geom. 5(1), 9–18 (2007)
    • Yau, M.-L.: Monodromy and isotopy of monotone Lagrangian tori. Math. Res. Lett. 16(3), 531–541 (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno