Ir al contenido

Documat


Refined dual Grothendieck polynomials, integrability, and the Schur measure

  • Kohei Motegi [1] ; Travis Scrimshaw [2]
    1. [1] Tokyo University of Marine Science and Technology

      Tokyo University of Marine Science and Technology

      Japón

    2. [2] Hokkaido University

      Hokkaido University

      Chūō-ku, Japón

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01041-w
  • Enlaces
  • Resumen
    • We investigate relations between refined dual Grothendieck polynomials, integrable lattice models, and stochastic processes. We first construct a vertex model whose partition function is a refined dual Grothendieck polynomial, where the states are interpreted as nonintersecting lattice paths. Using this, we show refined dual Grothendieck polynomials are multi-Schur functions and give a number of identities, including a Littlewood and Cauchy(–Littlewood) identity. We show that dual Grothendieck polynomials (up to a normalizing factor) describe the transition probabilities for the last passage percolation (LPP) random matrix process by refining a connection first noticed by Yeliussizov. By refining algebraic techniques of Johansson, we show Jacobi–Trudi formulas for skew refined dual Grothendieck polynomials conjectured by Grinberg and recover a relation between LPP and the Schur process due to Baik and Rains. Lastly, we extend our vertex model techniques to show some identities for refined Grothendieck polynomials, including a Jacobi–Trudi formula.

  • Referencias bibliográficas
    • Awata, H., Odake, S., Shiraishi, J.: Integral representations of the Macdonald symmetric polynomials. Commun. Math. Phys. 179(3), 647–666...
    • Amanov, A., Yeliussizov, D.: Determinantal formulas for dual Grothendieck polynomials. Proc. Am. Math. Soc. 150(10), 4113–4128 (2022)
    • Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1989). Reprint...
    • Brubaker, B., Bump, D., Friedberg, S.: Weyl group multiple Dirichlet series: type A combinatorial theory. Ann. Math. Stud. 175. Princeton...
    • Borodin, A., Bufetov, A., Wheeler, M.: Between the stochastic six vertex model and Hall–Littlewood processes. J. Combin. Theory Ser. A (2020)....
    • Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109(1), 1–65 (2001)
    • Bump, D., Schilling, A.: Crystal bases. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2017). Representations and combinatorics
    • Buciumas, V., Scrimshaw, T.: Double Grothendieck polynomials and colored lattice models. Int. Math. Res. Not. IMRN (2020). Art. ID rnaa327
    • Buciumas, V., Scrimshaw, T., Weber, K.: Colored five-vertex models and Lascoux polynomials and atoms. J. Lond. Math. Soc. 102(3), 1047–1066...
    • Buch, A.S.: A Littlewood-Richardson rule for the K-theory of Grassmannians. Acta Math. 189(1), 37–78 (2002)
    • Chen, W.Y.C., Li, B., Louck, J.D.: The flagged double Schur function. J. Algebraic Combin. 15(1), 7–26 (2002)
    • Chan, M., Pflueger, N.: Combinatorial relations on skew Schur and skew stable Grothendieck polynomials. Algebraic Combin. 4(1) (2021)
    • Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Nonlinear Integrable Systems—Classical Theory...
    • Dieker, A.B., Warren, J.: Determinantal transition kernels for some interacting particles on the line. Ann. Inst. Henri Poincaré Probab. Stat....
    • Fomin, S., Kirillov, A.N.: Grothendieck polynomials and the Yang-Baxter equation. In: Formal power series and algebraic combinatorics/Séries...
    • Fomin, S., Kirillov, A.N.: The Yang–Baxter equation, symmetric functions, and Schubert polynomials. In: Proceedings of the 5th Conference...
    • Fehér, L.M., Némethi, A., Rimányi, R.: Equivariant classes of matrix matroid varieties. Comment. Math. Helv. 87(4), 861–889 (2012)
    • Fulton, W.: Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1997). With applications...
    • Galashin, P.: A Littlewood–Richardson rule for dual stable Grothendieck polynomials. J. Combin. Theory Ser. A 151, 23–35 (2017)
    • Galashin, P., Grinberg, D., Liu, G.: Refined dual stable Grothendieck polynomials and generalized Bender–Knuth involutions. Electron. J. Combin....
    • Gorbounov, V., Korff, C.: Quantum integrability and generalised quantum Schubert calculus. Adv. Math. 313, 282–356 (2017)
    • Guo, P.L., Sun, S.C.C.: Identities on factorial Grothendieck polynomials. Adv. Appl. Math. 111, 101933 (2019)
    • Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58(3), 300–321 (1985)
    • Gunna, A., Zinn-Justin, P.: Vertex models for Canonical Grothendieck polynomials and their duals. Algebr. Comb. 6(1), 109–162 (2023)
    • Halacheva, I., Knutson, A., Zinn-Justin, P.: Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles. Sém. Lothar....
    • Iwao, S., Nagai, H.: The discrete Toda equation revisited: dual β-Grothendieck polynomials, ultradiscretization, and static solitons. J. Phys....
    • Iwao, S.: Grothendieck polynomials and the boson-fermion correspondence. Algebraic Combin. 3(5), 1023–1040 (2020)
    • Iwao, S.: Free-fermions and skew stable Grothendieck polynomials. J. Algebraic Combin. 56(2), 493– 526 (2022)
    • Iwao, S.: Free fermions and Schur expansions of multi-Schur functions. J. Combin. Theory Ser. A, 198:Paper No. 105767, 23 (2023)
    • Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000)
    • Johansson, K.: A multi-dimensional Markov chain and the Meixner ensemble. Ark. Mat. 48(1), 79–95 (2010)
    • Johansson, K., Rahman, M.: On inhomogeneous polynuclear growth. Ann. Probab. 50(2), 559–590 (2022)
    • Kim, J.S.: Jacobi–Trudi formula for refined dual stable Grothendieck polynomials. J. Combin. Theory Ser. A, 180:Paper No. 105415, 33 (2021)
    • Kim, J.S.: Jacobi–Trudi formulas for flagged refined dual stable Grothendieck polynomials. Algebr. Comb. 5(1), 121–148 (2022)
    • Kirillov, A.N.: On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal...
    • Kuniba, A., Maruyama, S., Okado, M.: Multispecies TASEP and combinatorial R. J. Phys. A, 48(34):34FT02, 19 (2015)
    • Kuniba, A., Maruyama, S., Okado, M.: Inhomogeneous generalization of a multispecies totally asymmetric zero range process. J. Stat. Phys....
    • Kuniba, A., Maruyama, S., Okado, M.: Multispecies TASEP and the tetrahedron equation. J. Phys. A, 49(11):114001, 22 (2016)
    • Knutson, A., Zinn-Justin, P.: Schubert puzzles and integrability I: invariant trilinear forms. Preprint arXiv:1706.10019 (2017)
    • Lascoux, A.: Symmetric functions and combinatorial operators on polynomials, volume 99 of CBMS Regional Conference Series in Mathematics....
    • Lenart, C.: Combinatorial aspects of the K-theory of Grassmannians. Ann. Comb. 4(1), 67–82 (2000)
    • Lindström, B.: On the vector representations of induced matroids. Bull. Lond. Math. Soc. 5, 85–90 (1973)
    • Lascoux, A., Naruse, H.: Finite sum Cauchy identity for dual Grothendieck polynomials. Proc. Jpn. Acad. Ser. A Math. Sci. 90(7):87–91 (2014)
    • Lam, T., Pylyavskyy, P.: Combinatorial Hopf algebras and K-homology of Grassmannians. Int. Math. Res. Not. IMRN, 2007(24):Art. ID rnm125,...
    • Lascoux, A., Schützenberger, M.-P.: Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math., 294(13):447–450 (1982)
    • Lascoux, A., Schützenberger, M.-P.: Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux....
    • Motegi, K.: Integrability approach to Fehér-Némethi-Rimányi-Guo-Sun type identities for factorial Grothendieck polynomials. Nucl. Phys. B...
    • Motegi, K., Sakai, K.: Vertex models, TASEP and Grothendieck polynomials. J. Phys. A, 46(35):355201, 26 (2013)
    • Motegi, K., Sakai, K.: K-theoretic boson-fermion correspondence and melting crystals. J. Phys. A 47(44), 445202 (2014)
    • Okounkov, A.: Random matrices and random permutations. Int. Math. Res. Not. 20, 1043–1095 (2000)
    • Okounkov, A.: Infinite wedge and random partitions. Selecta Math. (N.S.), 7(1):57–81 (2001)
    • Reiner, V., Tenner, B.E., Yong, A.: Poset edge densities, nearly reduced words, and barely set-valued tableaux. J. Combin. Theory Ser. A,...
    • Stanley, R.P.: Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge...
    • Shigechi, K., Uchiyama, M.: Boxed skew plane partition and integrable phase model. J. Phys. A 38(48), 10287–10306 (2005)
    • The Sage Developers. Sage Mathematics Software (Version 9.2) (2020). https://www.sagemath.org
    • The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2008). https://combinat.sagemath.org
    • Wachs, M.L.: Flagged Schur functions, Schubert polynomials, and symmetrizing operators. J. Combin. Theory Ser. A 40(2), 276–289 (1985)
    • Wu, F.Y.: Remarks on the modified potassium dihydrogen phosphate model of a ferroelectric. Phys. Rev. 168(2), 539–543 (1968)
    • Wheeler, M., Zinn-Justin, P.: Littlewood–Richardson coefficients for Grothendieck polynomials from integrability. J. Reine Angew. Math. 757,...
    • Yeliussizov, D.: Duality and deformations of stable Grothendieck polynomials. J. Algebraic Combin. 45(1), 295–344 (2017)
    • Yeliussizov, D.: Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs. J. Combin. Theory Ser. A 161,...
    • Yeliussizov, D.: Dual Grothendieck polynomials via last-passage percolation. C. R. Math. Acad. Sci. Paris 358(4), 497–503 (2020)
    • Yeliussizov, D.: Enumeration of plane partitions by descents. J. Combin. Theory Ser. A, 178:article 105367 (2021)
    • Yeliussizov, D.: Random plane partitions and corner distributions. Algebr. Comb. 4(4), 599–617 (2021)
    • Zinn-Justin, P.: Six-vertex, loop and tiling models: integrability and combinatorics. Lambert Academic Publishing. Habilitation thesis (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno