Ir al contenido

Documat


Separation properties for positive-definite functions on locally compact quantum groups and for associated von Neumann algebras

  • Jacek Krajczok [1] ; Adam Skalski [2]
    1. [1] University of Glasgow

      University of Glasgow

      Reino Unido

    2. [2] Institute of Mathematics

      Institute of Mathematics

      Warszawa, Polonia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01039-4
  • Enlaces
  • Resumen
    • Using the Godement mean on the Fourier-Stieltjes algebra of a locally compact quantum group we obtain strong separation results for quantum positive-definite functions associated to a subclass of representations, strengthening, for example, the known relationship between amenability of a discrete quantum group and existence of a net of finitely supported quantum positive-definite functions converging pointwise to 1. We apply these results to show that von Neumann algebras of unimodular discrete quantum groups enjoy a strong form of non-w∗-CPAP, which we call the matrix εseparation property.

  • Referencias bibliográficas
    • Bédos, E., Murphy, G., Tuset, L.: Co-amenability for compact quantum groups. J. Geom. Phys. 40(2), 130–153 (2001)
    • Bédos, E., Tuset, L.: Amenability and co-amenability for locally compact quantum groups. Internat. J. Math. 14(8), 865–884 (2003)
    • Bo˙zejko, M.: Some aspects of harmonic analysis on free groups. Colloq. Math. 41(2), 265–271 (1979)
    • Brannan, M.: Approximation properties for locally compact quantum groups. Banach Center Publ. 111, 185–232 (2017)
    • Brannan, M., Ruan, Z.-J.: L p-representations of discrete quantum groups. J. Reine Angew. Math. 732, 165–210 (2017)
    • Brown, N., Guentner, E.: New C∗-completions of discrete groups and related spaces. Bull. Lond. Math. Soc. 45(6), 1181–1193 (2013)
    • Brown, N., Ozawa, N.: “C∗-Algebras and finite dimensional approximations”, Graduate Studies in Mathematics, 88. American Mathematical Society,...
    • Caspers, M.: Weak amenability of locally compact quantum groups and approximation properties of extended quantum SU(1, 1). Commun. Math. Phys....
    • Cherix, P.A., Cowling, M., Jolissaint, P., Julg, P., Valette, A.: “Groups with the Haagerup property. Gromov’s a-T -menability,” Progress...
    • Choda, M.: Group factors of the Haagerup type. Proc. Japan Acad. Ser. A Math. Sci. 59, 174–177 (1983)
    • Connes, A.: Classification of injective factors. Cases II1, II∞, IIIλ, λ = 1, Ann. of Math. (2) 104 , no. 1, 73–115 (1976)
    • Das, B., Daws, M.: Quantum Eberlein compactifications and invariant means. Indiana Univ. Math. J. 65(1), 307–352 (2016)
    • Daws, M.: Multipliers of locally compact quantum groups via Hilbert C∗-modules. J. Lond. Math. Soc. II. Ser. 84(2), 385–407 (2011)
    • Daws, M.: Completely positive multipliers of quantum groups. Internat. J. Math. 23(12), 1250132 (2012)
    • Daws, M., Fima, P., Skalski, A., White, S.: The Haagerup property for locally compact quantum groups. J. Reine Angew. Math. 711, 189–229 (2016)
    • Daws, M., Kasprzak, P., Skalski, A., Sołtan, P.: Closed quantum subgroups of locally compact quantum groups. Adv. Math. 231, 3473–3501 (2012)
    • Daws, M., Krajczok, J., Voigt, C.: The approximation property for locally compact quantum groups, Adv. Math. 438 , 79 pp (2024)
    • Daws, M., Salmi, P.: Completely positive definite functions and Bochner’s theorem for locally compact quantum groups. J. Funct. Anal. 264(7),...
    • Daws, M., Skalski, A., Viselter, A.: Around property (T) for quantum groups. Comm. Math. Phys. 353(1), 69–118 (2017)
    • Derighetti, A.: Sur certaines proprétés des représentations unitaires des groupes localement compacts. Comment. Math. Helv. 48, 328–339 (1973)
    • Dixmier, J.: “C*-algebras”, North-Holland Mathematical Library, vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977)
    • 2Effros, E.G., Ruan, Z-J.: “Operator spaces,” Oxford University Press, (2000)
    • Eymard, P.: L’algébre de Fourier d’un groupe localement compact. Bull. Soc. Math. France 92, 181–236 (1964)
    • Fell, J.M.G.: Weak containment and induced representations of groups. Canadian J. Math. 14, 237–268 (1962)
    • Godement, R.: Les fonctions de type positif et la théorie des groupes. Trans. Amer. Math. Soc. 63, 1–84 (1948)
    • Hu, Z., Neufang, M., Ruan, Z.-J.: Completely bounded multipliers over locally compact quantum groups. Proc. Lond. Math. Soc. 103(1), 1–39...
    • Jolissaint, P.: Haagerup approximation property for finite von Neumann algebras. J. Operator Theory 48, 549–571 (2002)
    • Kaniuth, E., Lau, A.T.-M.: “Fourier and Fourier-Stieltjes algebras on locally compact groups,” mathematical surveys and monographs, 231. American...
    • Krajczok, J., Sołtan, P.M.: Compact quantum groups with representations of bounded degree. J. Operator Theory 80(2), 415–428 (2018)
    • Kustermans, J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12, 289–338 (2001)
    • Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. École. Norm. Sup. 33(9), 837– 934 (2000)
    • Kustermans, J., Van Daele, A.: C*-algebraic quantum groups arising from algebraic quantum groups. Int. J. Math. 8(8), 1067–1139 (1997)
    • Neshveyev, S., Tuset, L.: “Compact quantum groups and their representation categories,” Cours Spécialisés 20. Société Mathématique de France,...
    • Ruan, Z.-J.: Amenability of Hopf von Neumann algebras and Kac algebras. J. Funct. Anal. 139(2), 466–499 (1996)
    • Runde, V., Viselter, A.: On positive definiteness over locally compact quantum groups. Canad. J. Math. 68(5), 1067–1095 (2016)
    • Takesaki, M.: “Theory of operator algebras. I.” Reprint of the first (1979) edition. Encyclopaedia of Mathematical Sciences, 124. Operator...
    • Tomatsu, R.: Amenable discrete quantum groups. J. Math. Soc. Japan 58(4), 949–964 (2006)
    • Van Daele, A.: Locally compact quantum groups. A von Neumann algebra approach, SIGMA Symmetry Integrability Geom. Methods Appl. 10 , Paper...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno