Ir al contenido

Documat


Holomorphic forms and non-tautological cycles on moduli spaces of curves

  • Veronica Arena [1] ; Samir Canning [2] ; Emily Clader [3] ; Richard Haburcak [4] ; Amy Q. Li [5] ; Siao Chi Mok [1] ; Carolina Tamborini [6]
    1. [1] University of Cambridge

      University of Cambridge

      Cambridge District, Reino Unido

    2. [2] Swiss Federal Institute of Technology in Zurich

      Swiss Federal Institute of Technology in Zurich

      Zürich, Suiza

    3. [3] San Francisco State University

      San Francisco State University

      Estados Unidos

    4. [4] Ohio State University

      Ohio State University

      City of Columbus, Estados Unidos

    5. [5] University of Texas at Austin

      University of Texas at Austin

      Estados Unidos

    6. [6] Universität Duisburg Essen, Essen, Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01038-5
  • Enlaces
  • Resumen
    • We prove, for infinitely many values of g and n, the existence of non-tautological algebraic cohomology classes on the moduli space Mg,n of smooth, genus-g, npointed curves. In particular, when n = 0, our results show that there exist nontautological algebraic cohomology classes on Mg for g = 12 and all g ≥ 16. These results generalize the work of Graber–Pandharipande and van Zelm, who proved that the classes of particular loci of bielliptic curves are non-tautological and thereby exhibited the only previously-known non-tautological class on any Mg: the bielliptic cycle on M12. We extend their work by using the existence of holomorphic forms on certain moduli spaces Mg,n to produce non-tautological classes with nontrivial restriction to the interior, via which we conclude that the classes of many new doublecover loci are non-tautological.

  • Referencias bibliográficas
    • Keel, S.: Intersection theory of moduli space of stable n-pointed curves of genus zero. Trans. Amer. Math. Soc. 330(2), 545–574 (1992)
    • Petersen, D.: The structure of the tautological ring in genus one. Duke Math. J. 163(4), 777–793 (2014)
    • Petersen, D., Tommasi, O.: The Gorenstein conjecture fails for the tautological ring of M2,n. Invent. Math. 196(1), 139–161 (2014)
    • Carel, F.: Chow rings of moduli spaces of curves I The Chow ring of M3. Ann. of Math. 132(2), 331–419 (1990)
    • Carel, F.: Chow rings of moduli spaces of curves. II. Some results on the Chow ring of M4. Ann. of Math. 132(3), 421–449 (1990)
    • Izadi, E.: The Chow ring of the moduli space of curves of genus 5. In The moduli space of curves (Texel Island, 1994), volume 129 of Progr....
    • Penev, N., Vakil, R.: The Chow ring of the moduli space of curves of genus six. Algebr. Geom. 2(1), 123–136 (2015)
    • Samir, C., Hannah, L.: The Chow rings of the moduli spaces of curves of genus 7, 8, and 9. To appear in J. Algebraic Geom., arXiv:2104.05820,...
    • Samir, C, Hannah, L.: On the Chow and cohomology rings of moduli spaces of stable curves. arXiv:2208.02357, (2022)
    • Samir, C., Hannah, L., Sam, P.: Extensions of tautological rings and motivic structures in the cohomology of Mg,n. arXiv:2307.08830, (2023)
    • Graber, T., Pandharipande, R.: Constructions of nontautological classes on moduli spaces of curves. Michigan Math. J. 51(1), 93–109 (2003)
    • van Zelm, J.: Nontautological bielliptic cycles. Pacific J. Math. 294(2), 495–504 (2018)
    • Lian, C.: Non-tautological Hurwitz cycles. Math. Z. 301(1), 173–198 (2022)
    • Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math.,....
    • Samir, C., Hannah, L.: The bielliptic locus in genus 11. To appear in Michigan Math. J., arXiv:2209.09715, (2022)
    • Schmitt, J., Zelm, J.: Intersections of loci of admissible covers with tautological classes. Selecta Math. (N.S.) 26(5), 79 (2020)
    • Dan, A., Alessio, C., Angelo, V.: Twisted bundles and admissible covers. Comm. Algebra 31(8), 3547–3618 (2003)
    • Getzler, E.: The semi-classical approximation for modular operads. Comm. Math. Phys. 194(2), 481– 492 (1998)
    • Deligne, P.: Théorie de hodge: II. Publications Mathématiques de l’IHÉS 40, 5–57 (1971)
    • Deligne, P.: Théorie de hodge: III. Publications Mathématiques de l’IHÉS 44, 5–77 (1974)
    • Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge structures, volume 52 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series...
    • Faltings, G., Chai, C-L.: Degeneration of abelian varieties, volume 22 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Results in Mathematics...
    • Faber, C., Pandharipande, R.: Tautological and non-tautological cohomology of the moduli space of curves. In: Handbook of moduli. Vol. I,...
    • Tsushima, R.: On the spaces of Siegel cusp forms of degree two. Amer. J. Math. 104(4), 843–885 (1982)
    • Jonas, B., Fabien, C., Carel, F., van der Gerard, G.: Siegel modular forms of degree two and three. http://smf.compositio.nl, 2017. Retrieved...
    • Petersen, D.: Cohomology of local systems on the moduli of principally polarized abelian surfaces. Pacific J. Math. 275(1), 39–61 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno