Ir al contenido

Documat


Weak Brill–Noether on abelian surfaces

  • Izzet Coskun [1] ; Howard Nuer [2] ; Kōta Yoshioka [3]
    1. [1] University of Illinois at Chicago

      University of Illinois at Chicago

      City of Chicago, Estados Unidos

    2. [2] Technion – Israel Institute of Technology

      Technion – Israel Institute of Technology

      Israel

    3. [3] Kobe University

      Kobe University

      Chuo-ku, Japón

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01044-7
  • Enlaces
  • Resumen
    • We study the cohomology of a general stable sheaf on an abelian surface. We say that a moduli space satisfies weak Brill–Noether if the general sheaf has at most one non-zero cohomology group. Let (X, H) be a polarized abelian surface and let v = (r,ξ, a) be a Mukai vector on X with v2 0, r > 0 and ξ · H > 0. We show that if ρ(X) = 1 or ρ(X) = 2 and X contains an elliptic curve, then all the moduli spaces MX,H (v)satisfy weak Brill–Noether. Conversely, if ρ(X) > 2 or ρ(X) = 2 and X does not contain an elliptic curve, we show that there are infinitely many moduli spaces MX,H (v) that fail weak Brill–Noether. As a consequence, we classify Chern classes of Ulrich bundles on abelian surfaces.

  • Referencias bibliográficas
    • Arbarello, E., Cornalba, M., Griffiths, P. A., Harris, J.: Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der Mathematischen...
    • Beauville, A.: Ulrich bundles on abelian surfaces. Proc. Am. Math. Soc. 144(11), 4609–4611 (2016)
    • Bridgeland, T., Maciocia, A.: Complex surfaces with equivalent derived categories. Math. Z. 236(4), 677–697 (2001)
    • Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166(2), 317–345 (2007)
    • Bridgeland, T.: Stability conditions on K3 surfaces. Duke Math. J. 141(2), 241–291 (2008)
    • Bridgeland, T.: Spaces of stability conditions. In Algebraic geometry-Seattle 2005, volume 80 of Proc. Sympos. Pure Math., pp. 1–21, Providence,...
    • Coskun, I., Huizenga, J.: Weak Brill–Noether for rational surfaces, in local and global methods in algebraic geometry. Contemp. Math. 712,...
    • Coskun, I., Huizenga, J.: Brill–Noether theorems and globally generated vector bundles on Hirzebruch surfaces. Nagoya Math. J. 238, 1–36 (2020)
    • Coskun, I., Huizenga, J.: Interpolation and moduli spaces of vector bundles on very general blowups of P2. Épijournal Géom. Algébrique 8,...
    • Coskun, I., Huizenga, J., Nuer, H.: Brill–Noether Theory of the moduli spaces of sheaves on surfacesContemp. Math. (2023)
    • Coskun, I., Nuer, H., Yoshioka, K.: The cohomology of the general stable sheaf on a K3 surface. Adv. Math. 426, 109102 (2023)
    • Gieseker, D.: On the moduli space of vector bundles on an algebraic surface. Ann. Math. 106, 45–60 (1977)
    • Göttsche, L., Hirschowitz, A.: Weak Brill–Noether for vector bundles on the projective plane, in Algebraic geometry (Catania, 1993/Barcelona,...
    • Kurihara, K., Yoshioka, K.: Holomorphic vector bundles on non-algebraic tori of dimension 2.Manuscr. Math. 126, 143–166 (2008)
    • Levine, D., Zhang, S.: Brill–Noether and existence of semistable sheaves for del Pezzo surfaces, to appear in Ann. Inst. Fourier
    • Ma, S.: Decompositions of an abelian surface and quadratic forms. Ann. Inst. Fourier (Grenoble) 61(2), 717–743 (2011)
    • Maruyama, M.: Moduli of stable sheaves II. J. Math. Kyoto 18, 557–614 (1978)
    • Matsuki, K., Wentworth, R.: Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface. Internat. J. Math. 8,...
    • Minamide, H., Yanagida, S., Yoshioka, K.: The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces. J....
    • Mukai, S.: Semi-homogeneous vector bundles on an abelian variety. J. Math. Kyoto Univ. 18, 239–272 (1978)
    • Mukai, S.: Duality between D(X) and D(X) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)
    • Mukai, S.: Fourier functor and its application to the moduli of bundles on an abelian variety, Algebraic geometry, Sendai, 1985, Adv. Stud....
    • Nuer, H., Yoshioka, K.: MMP via wall-crossing for moduli spaces of stable sheaves on an Enriques surface. Adv. Math. 372, 107283 (2020)
    • Orlov, D.: Derived categories of coherent sheaves on abelian varieties and equivalences between them, Izv. RAN, Ser. Mat., v.66, N3 (2002),...
    • Shioda, T., Mitani, N.: Singular abelian surfaces and binary quadratic forms. In Classification of Algebraic Varieties and Compact Complex...
    • Yanagida, S., Yoshioka, K.: Bridgeland’s stabilities on abelian surfaces. Math. Z. 276(1–2), 571–610 (2014)
    • Yoshioka, K.: Twisted stability and Fourier–Mukai transform I. Compos. Math. 138, 261–288 (2003)
    • Yoshioka, K.: Stability and the Fourier–Mukai transform II. Compos. Math. 145, 112–142 (2009)
    • Yoshioka, K.: Fourier–Mukai transform on abelian surfaces. Math. Ann. 345(3), 493–524 (2009)
    • Yamada, K.: Finiteness of isomorphic classes in the set of moduli schemes of sheaves on a surface. arXiv:1001.2629
    • Yoshioka, K.: Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface. Adv. Stub. Pure Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno