Ir al contenido

Documat


On tori periods of Weil representations of unitary groups

  • Neelima Borade [1] ; Jonas Franzel [2] ; Johannes Girsch [5] ; Wei Yao [6] ; Qiyao Yu [3] ; Elad Zelingher [4]
    1. [1] Princeton University

      Princeton University

      Estados Unidos

    2. [2] University of Duisburg-Essen

      University of Duisburg-Essen

      Kreisfreie Stadt Essen, Alemania

    3. [3] Columbia University

      Columbia University

      Estados Unidos

    4. [4] University of Michigan–Ann Arbor

      University of Michigan–Ann Arbor

      City of Ann Arbor, Estados Unidos

    5. [5] University of Sheffield,United Kingdo
    6. [6] University Ave, Chicago, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01047-4
  • Enlaces
  • Resumen
    • We determine the restriction of Weil representations of unitary groups to maximal tori. In the local case, we show that the Weil representation contains a pair of compatible characters if and only if a root number condition holds. In the global case, we show that a torus period corresponding to a maximal anisotropic torus of the global theta lift of a character does not vanish if and only if the local condition is satisfied everywhere and a central value of an L-function does not vanish. Our proof makes use of the seesaw argument and of the well-known theta lifting results from U(1) to U(1). Our results are used in [1, 2] to construct Arthur packets for G2.

  • Referencias bibliográficas
    • Alonso, R., He, Q., Ray, M., Roset, M.: Dihedral long root A-packets of p-adic G2 via theta correspondence. Adv. Math., 453, (2024)
    • Baki´c, P., Horawa, A., Li-Huerta, S. D., Sweeting, N.: Global long root A-packets for G2: the dihedral case. (2024). arXiv:2405.17375
    • Baki´c, P., Savin, G.: Howe duality for a quasi-split exceptional dual pair. Mathematische Annalen, (2023)
    • Bayer-Fluckiger, E., Lee, T.-Y., Parimala, R.: Embeddings of maximal tori in classical groups and explicit Brauer-Manin obstruction. (2014)....
    • Fang, Y., Sun, B., Xue, H.: Godement-Jacquet L-functions and full theta lifts. Math. Z. 289(1–2), 593–604 (2018)
    • Gan, W. T.: The Shimura correspondence à la Waldspurger
    • Gan, W. T.: Periods and theta correspondence. In Representations of reductive groups, volume 101 of Proc. Sympos. Pure Math., pages 113–132....
    • Gan, W. T., Gross, B. H., Prasad, D.: Restrictions of representations of classical groups: examples. Astérisque, (346):111–170, (2012). Sur...
    • Gan, W. T., Gross, B. H., Prasad, D.: Symplectic local root numbers, central critical L values, and restriction problems in the representation...
    • Gan, W.T., Gross, B.H., Prasad, D.: Branching laws for classical groups: the non-tempered case. Compos. Math. 156(11), 2298–2367 (2020)
    • Gan, W.T., Gross, B.H., Prasad, D.: Twisted GGP problems and conjectures. Compos. Math. 159(9), 1916–1973 (2023)
    • Gan, W. T., Takeda, S.: On the Howe duality conjecture in classical theta correspondence. In Advances in the theory of automorphic forms and...
    • Gross, B.H., Prasad, D.: On the decomposition of a representation of SOn when restricted to SOn−1. Canad. J. Math. 44(5), 974–1002 (1992)
    • Gross, B.H., Prasad, D.: On irreducible representations of SO2n+1 × SO2m. Canad. J. Math. 46(5), 930–950 (1994)
    • Harris, M., Kudla, S.S., Sweet, W.J.: Theta dichotomy for unitary groups. J. Amer. Math. Soc. 9(4), 941–1004 (1996)
    • Harris, R.N.: The refined Gross-Prasad conjecture for unitary groups. Int. Math. Res. Not. IMRN 2, 303–389 (2014)
    • Howe, R.: Transcending classical invariant theory. J. Amer. Math. Soc. 2(3), 535–552 (1989)
    • Ichino, A., Ikeda, T.: On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Geom. Funct. Anal....
    • Kudla, S.S.: Splitting metaplectic covers of dual reductive pairs. Israel J. Math. 87(1–3), 361–401 (1994)
    • Kudla, S. S.: Tate’s thesis. In An introduction to the Langlands program (Jerusalem, 2001), pages 109–131. Birkhäuser Boston, Boston, MA,...
    • Kudla, S. S., Rallis, S.: A regularized Siegel-Weil formula: the first term identity. Ann. of Math. (2), 140(1):1–80, (1994)
    • Mínguez, A.: Correspondance de Howe explicite: paires duales de type II. Ann. Sci. Éc. Norm. Supér. (4), 41(5):717–741, (2008)
    • Mœ glin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondances de Howe sur un corps p-adique, volume 1291 of Lecture Notes in Mathematics....
    • Moen, C.: The dual pair (U(3), U(1)) over a p-adic field. Pacific J. Math. 127(1), 141–154 (1987)
    • Paul, A.: Howe correspondence for real unitary groups. J. Funct. Anal. 159(2), 384–431 (1998)
    • Prasad, D.: Weil representation, Howe duality, and the theta correspondence. In: Theta functions: from the classical to the modern, volume...
    • Prasad, G., Rapinchuk, A.S.: Local-global principles for embedding of fields with involution into simple algebras with involution. Comment....
    • Rogawski, J. D.: The multiplicity formula for A-packets. In The zeta functions of Picard modular surfaces, pages 395–419. Univ. Montréal,...
    • Rüd, T.: Tamagawa numbers of symplectic algebraic tori, orbital integrals, and mass formulae for isogeny class of abelian varieties over finite...
    • Tate, J. T.: Fourier analysis in number fields, and Hecke’s zeta-functions. In Algebraic Number Theory (Proc. Instructional Conf., Brighton,...
    • Voskresenski˘ı, V. E.: Algebraic groups and their birational invariants, volume 179 of Translations of Mathematical Monographs. American Mathematical...
    • Waldspurger, J.-L.: Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p = 2. In Festschrift in honor of I. I. Piatetski-Shapiro...
    • Xue, H.: Refined global Gan-Gross-Prasad conjecture for Fourier-Jacobi periods on symplectic groups. Compos. Math. 153(1), 68–131 (2017)
    • Xue, H.: Bessel models for real unitary groups: The tempered case. Duke Mathematical Journal, pages 1 – 37, (2023)
    • Yamana, S.: L-functions and theta correspondence for classical groups. Invent. Math. 196(3), 651–732 (2014)
    • Yang, T.: Theta liftings and Hecke L-functions. J. Reine Angew. Math. 485, 25–53 (1997)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno