Ir al contenido

Documat


Riso-stratifications and a tree invariant

  • David Bradley-Williams [2] ; Immanuel Halupczok [1]
    1. [1] Heinrich Heine University Düsseldorf

      Heinrich Heine University Düsseldorf

      Kreisfreie Stadt Düsseldorf, Alemania

    2. [2] Institute of Mathematics, Czech Academy of Sciences, Czech Republic
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01040-x
  • Enlaces
  • Resumen
    • We introduce a new notion of stratification (“riso-stratifications”), which is canonical and which exists in a variety of settings, including different topological fields like C, R and Qp, and also including different o-minimal structures on R. Riso-stratifications are defined directly in terms of a suitable notion of triviality along strata; the key difficulty and main result is that the strata defined in this way are “algebraic in nature”, i.e., definable in the corresponding first-order language. As an example application, we show that local motivic Poincaré series are, in some sense, trivial along the strata of the riso-stratification. Behind the notion of riso-stratification lies a new invariant of singularities, which we call the “riso-tree”, and which captures, in a canonical way, information that was contained in the non-canonical strata of a Lipschitz stratification. On our way to the Poincaré series application, we show, among others, that our notions interact well with motivic integration.

  • Referencias bibliográficas
    • Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics...
    • Bradley-Williams, D., Halupczok, I.: Spherically complete models of Hensel minimal valued fields. Math. Log. Q. 69(2), 138–146 (2023)
    • Cluckers, R., Comte, G., Loeser, F.: Local metric properties and regular stratifications of p-adic definable sets. Comment. Math. Helv. 87(4),...
    • Cluckers, R., Halupczok, I.: Quantifier elimination in ordered abelian groups. Confluentes Mathematici 3(4), 587–615 (2011)
    • Cluckers, R., Halupczok, I.: Evaluation of motivic functions, non-nullity, and integrability in fibers. Adv. Math. 409, 29 (2022)
    • Cluckers, R., Halupczok, I., Rideau-Kikuchi, S.: Hensel minimality I. Forum Math. Pi 10, e11 (2022)
    • Cluckers, R., Halupczok, I., Rideau-Kikuchi, S., Vermeulen, F.: Hensel minimality II: mixed characteristic and a diophantine application....
    • Cluckers, R., Lipshitz, L.: Fields with analytic structure. J. Eur. Math. Soc. (JEMS) 13(4), 1147–1223 (2011). (English)
    • Cluckers, R., Loeser, F.: Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic...
    • Cluckers, R., Loeser, F.: Constructible motivic functions and motivic integration. Invent. Math. 173(1), 23–121 (2008)
    • Comte, G., Halupczok, I.: Motivic Vitushkin invariants, Preprint (2022)
    • van den Dries, L.: A generalization of the Tarski-Seidenberg theorem, and some nondefinability results. Bull. Amer. Math. Soc. (N.S.) 15(2),...
    • van den Dries, L.: Dimension of definable sets, algebraic boundedness and Henselian fields. Ann. Pure Appl. Logic 45(2), 189–209 (1989). (Stability...
    • van den Dries, L.: T -convexity and tame extensions. II. J. Symbolic Logic 62(1), 14–34 (1997)
    • van den Dries, L., Lewenberg, A.H.: T -convexity and tame extensions. J. Symbolic Logic 60(1), 74–102 (1995)
    • Forey, A.: Motivic local density. Math. Z. 287(1–2), 361–403 (2017). (MR 3694680)
    • Ramírez, E.G.: Definable functions and stratifications in power-bounded T -convex fields. Notre Dame J. Formal Logic 61(3), 441–465 (2020)....
    • Halupczok, I.: Non-Archimedean Whitney stratifications. Proc. Lond. Math. Soc. (3) 109(5), 1304– 1362 (2014)
    • Halupczok, I.: A non-archimedean approach to stratifications, Preprint (2023)
    • Ta Lê Loi: Verdier and strict Thom stratifications in o-minimal structures. Illinois J. Math. 42(2), 347–356 (1998)
    • Miller, C.: A growth dichotomy for o-minimal expansions of ordered fields, Logic: from foundations to applications (Staffordshire, 1993),...
    • Mostowski, T.: Lipschitz equisingularity. Dissertationes Math. (Rozprawy Mat.) 243, 46 (1985)
    • Mumford, D.: The red book of varieties and schemes. Includes the Michigan lectures (1974) on “Curves and their Jacobians”., 2nd, expanded...
    • Prieß-Crampe, S., Ribenboim, P.: Fixed points, combs and generalized power series. Abh. Math. Semin. Univ. Hamb. 63, 227–244 (1993). ((English))
    • Rannou, E.: The complexity of stratification computation. Discrete Comput. Geom. 19(1), 47–78 (1998)
    • Teissier, B.: Variétés polaires. II: Multiplicités polaires, sections planes et conditions de Whitney. (Polar varieties. II: Polar multiplicities,...
    • Whitney, H.: Tangents to an analytic variety. Ann. Math. (2) 81, 496–549 (1965)
    • Zariski, O.: Some open questions in the theory of singularities. Bull. Amer. Math. Soc. 77, 481–491 (1971)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno