Ir al contenido

Documat


Limit laws for cotangent and Diophantine sums

  • Bence Borda [1] ; Lorenz Frühwirth [1] ; Manuel Hauke [1]
    1. [1] Graz University of Technology

      Graz University of Technology

      Graz, Austria

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01046-5
  • Enlaces
  • Resumen
    • Limit laws for ergodic averages with a power singularity over circle rotations were first proved by Sinai and Ulcigrai, as well as Dolgopyat and Fayad. In this paper, we prove limit laws with an estimate for the rate of convergence for the sum ΣN n=1 f (nα)/n p in terms of a 1-periodic function f with a power singularity of order p ≥ 1 at integers. Our results apply in particular to cotangent sums related to Dedekind sums, and to sums of reciprocals of fractional parts, which appear in multiplicative Diophantine approximation. The main tools are Schmidt’s method in metric Diophantine approximation, the Gauss–Kuzmin problem and the theory of ψ-mixing random variables.

  • Referencias bibliográficas
    • Beck, J.: Probabilistic Diophantine Approximation. Randomness in Lattice Point Counting. Springer Monographs in Mathematics, Springer, Cham...
    • Beresnevich, V., Haynes, A., Velani, S.: Sums of reciprocals of fractional parts and multiplicative Diophantine approximation. Mem. Amer....
    • Berndt, B.: Dedekind sums and a paper of G. H. Hardy. J. London Math. Soc. 13, 129–137 (1976)
    • Berndt, B., Straub, A.: On a secant Dirichlet series and Eichler integrals of Eisenstein series. Math. Z. 284, 827–852 (2016)
    • Bettin, S., Drappeau, S.: Effective estimation of some oscillatory integrals related to infinitely divisible distributions. Ramanujan J. 57,...
    • Björklund, M., Gorodnik, A.: Central limit theorems for Diophantine approximants. Math. Ann. 374, 1371–1437 (2019)
    • Björklund, M., Gorodnik, A.: Central limit theorems for generic lattice point counting. Selecta Math. (N. S.) 29 , Paper No. 12, 44 pp (2023)
    • Björklund, M., Gorodnik, A.: Poisson approximation and Weibull asymptotics in the geometry of numbers. Trans. Amer. Math. Soc. 376, 2155–2180...
    • Borda, B.: On the theorem of Davenport and generalized Dedekind sums. J. Number Theory 172, 1–20 (2017)
    • Borda, B.: Remarks on sums of reciprocals of fractional parts. Acta Arith. 212, 373–389 (2024)
    • R. Bradley: Basic properties of strong mixing conditions. A survey and some open questions. Update of, and a supplement to, the,: original....
    • Chamizo, F., Martin, B.: The convergence of certain Diophantine series. J. Number Theory 229, 179– 198 (2021)
    • Chamizo, F., Martin, B.: The approximate functional equation of some Diophantine series. Monatsh. Math. 202, 41–52 (2023)
    • Diamond, H., Vaaler, J.: Estimates for partial sums of continued fraction partial quotients. Pacific J. Math. 122, 73–82 (1986)
    • Dolgopyat, D., Fayad, B.: Limit theorems for toral translations. Hyperbolic Dynamics, Fluctuations and Large Deviations 227–277. Proc. Sympos....
    • Dolgopyat, D., Fayad, B., Vinogradov, I.: Central limit theorems for simultaneous Diophantine approximations. J. Éc. polytech. Math. 4, 1–35...
    • Erd ˝os, P.: Some remarks on Diophantine approximations. J. Indian Math. Soc. 12, 67–74 (1948)
    • Fregoli, R.: Sums of reciprocals of fractional parts. Int. J. Number Theory 15, 789–797 (2019)
    • Fregoli, R.: Sums of reciprocals of fractional parts II. With an Appendix by M. Björklund, R. Fregoli and A. Gorodnik. arXiv:2304.02566
    • Fuchs, M.: Invariance principles in metric Diophantine approximation. Monatsh. Math. 139, 177–203 (2003)
    • Fuchs, M.: On a problem of W. J. LeVeque concerning metric Diophantine approximation. Trans. Amer. Math. Soc. 355, 1787–1801 (2003)
    • Fuchs, M.: On a problem of W. J. LeVeque concerning metric Diophantine approximation. II. Math. Proc. Cambridge Philos. Soc. 137, 17–41 (2004)
    • Hardy, G., Littlewood, J.: Some problems of Diophantine approximation: the lattice points of a rightangled triangle. Proc. London Math. Soc....
    • Hardy, G., Littlewood, J.: Some problems of Diophantine approximation: the lattice points of a rightangled triangle. (Second memoir.) Abh....
    • Hardy, G., Littlewood, J.: Some problems of Diophantine approximation: a series of cosecants. Bull. Calcutta Math. Soc. 20, 251–266 (1930)
    • Harman,G.: Metric Number Theory. London Mathematical Society Monographs. New Series, 18. The Clarendon Press, Oxford University Press, New...
    • Heinrich, L.: Rates of convergence in stable limit theorems for sums of exponentially ψ-mixing random variables with an application to metric...
    • Iosifescu,M., Kraaikamp, C.: Metrical Theory of Continued Fractions. Mathematics and its Applications, 547. Kluwer Academic Publishers, Dordrecht,...
    • Kesten, H.: Uniform distribution mod 1. Ann. of Math. (2) 71, 445–471 (1960)
    • Kesten, H.: Uniform distribution mod 1. II. Acta Arith. 7 (1961/1962), 355–380
    • Khinchin, A.: Continued Fractions. University of Chicago Press, Chicago, Ill.-London (1964)
    • Kruse, A.: Estimates of N k=1 k−skx−t . Acta Arith. 12 , 229–261 (1966/1967)
    • Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney...
    • Lalín, M., Rodrigue, F., Rogers, M.: Secant zeta functions. J. Math. Anal. Appl. 409, 197–204 (2014)
    • Lê, T., Vaaler, J.: Sums of products of fractional parts. Proc. Lond. Math. Soc. 111, 561–590 (2015)
    • Morita, T.: Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math....
    • Petrov, V.: Limit Theorems of Probability Theory. Sequences of Independent Random Variables. Oxford Studies in Probability, 4. Oxford Science...
    • Philipp, W.: Mixing Sequences of Random Variables and Probabilistic Number Theory. Memoirs of the American Mathematical Society, No. 114....
    • Rivoal, T.: On the convergence of Diophantine Dirichlet series. Proc. Edinb. Math. Soc. 55, 513–541 (2012)
    • Sadikova, S.: Two-dimensional analogues of an inequality of Esseen with applications to the central limit theorem. Theory Probab. Appl. 11,...
    • Samur, J.: On some limit theorems for continued fractions. Trans. Amer. Math. Soc. 316, 53–79 (1989)
    • Samur, J.: A functional central limit theorem in Diophantine approximation. Proc. Amer. Math. Soc. 111, 901–911 (1991)
    • Schmidt, W.: A metrical theorem in Diophantine approximation. Canadian J. Math. 12, 619–631 (1960)
    • Sinai, Y., Ulcigrai, C.: A limit theorem for Birkhoff sums of non-integrable functions over rotations. Contemp. Math., 469. American Mathematical...
    • Vallée, B.: Opérateurs de Ruelle-Mayer généralisés et analyse en moyenne des algorithmes d’Euclide et de Gauss. Acta Arith. 81, 101–144 (1997)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno