Ir al contenido

Documat


Genuine Gelfand–Graev functor and the quantum affine Schur–Weyl duality

  • Fan Gao [1] ; Nadya Gurevich [2] ; Edmund Karasiewicz [3]
    1. [1] Zhejiang University

      Zhejiang University

      China

    2. [2] Ben-Gurion University of the Negev

      Ben-Gurion University of the Negev

      Israel

    3. [3] National University of Singapore

      National University of Singapore

      Singapur

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01049-2
  • Enlaces
  • Resumen
    • We explicate relations among the Gelfand–Graev modules for central covers of reductive p-adic groups, the Euler–Poincaré polynomial of the Arnold–Brieskorn manifold, and the quantum affine Schur–Weyl duality. These three objects and their relations are dictated by a permutation representation of the Weyl group. Our main result concerns the connection between the Gelfand–Graev module and quantum affine Schur-Weyl duality, which only holds for certain covers of GL(r). In this case, the Gelfand–Graev functor is essentially the quantum affine Schur–Weyl functor. This has two significant consequences. First, the commuting algebra of the Iwahori-fixed part of the Gelfand–Graev representation is the quotient of a quantum group. Second, intertwining operators on the p-adic group side are matched with R-matrices on the quantum group side, reproving a result of Brubaker–Buciumas–Bump.

  • Referencias bibliográficas
    • Antor, J.: Affine versions of Schur–Weyl duality, Master’s Thesis, 2020, available at https://www.math. uni-bonn.de/ag/stroppel/Masterarbeit_Antor-4-1.pdf,
    • Arnol’d, V.I.: The cohomology ring of the group of dyed braids. Russian. Mat. Zametki 5, 227–231 (1969)
    • Bao, H., Kujawa, J., Li, Y., W.: Weiqiang, Geometric Schur duality of classical type. Transform. Groups 23(2), 329–389 (2018). https://doi.org/10.1007/s00031-017-9447-4
    • Bao, H., Wang, W., Watanabe, H.: Multiparameter quantum Schur duality of type B. Proc. Amer. Math. Soc. 146(8), 3203–3216 (2018). https://doi.org/10.1090/proc/13749
    • Bourbaki, N.: Algebra I. Chapters 1–3, Elements of Mathematics (Berlin), Translated from the French; Reprint of the: English translation [MR0979982...
    • Bourbaki, N.: Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Translated from the,: French original by Andrew...
    • Brieskorn, E.: Sur les groupes de tresses [d’après V. I. Arnol’d], French, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, , Springer,...
    • Brubaker, B., Buciumas, V., Bump, D., A.: Yang-Baxter equation for metaplectic ice. Comm. Number Theory and Physics 13(1), 101–148 (2019)....
    • Bushnell, C.J., Henniart, G.: Generalized Whittaker models and the Bernstein center. Amer. J. Math. 125(3), 513–547 (2003)
    • Chari, V., Pressley, A.: A guide to quantum groups, Corrected reprint of the 1994 original. Cambridge University Press, Cambridge (1995)
    • Chari, V., Pressley, A.: Quantum affine algebras and affine Hecke algebras. Pacific J. Math. 174(2), 295–326 (1996)
    • Deng, B., Du, J., Fu, Q.: A double Hall algebra approach to affine quantum Schur-Weyl theory, London Mathematical Society Lecture Note Series,...
    • Doty, S.R., Green, R.M.: Presenting affine q-Schur algebras. Math. Z. 256(2), 311–345 (2007). https:// doi.org/10.1007/s00209-006-0076-1
    • Fan, Z., Lai, C.-J., Li, Y., Luo, L., Wang, W., Watanabe, H.: Quantum Schur duality of affine type C with three parameters. Math. Res. Lett....
    • Flicker, Y.Z., Kazhdan, D.A.: Metaplectic correspondence. Inst. Hautes Études Sci. Publ. Math. 64, 53–110 (1986)
    • Fujita, R.: Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality. Int. Math. Res. Not. IMRN 22, 8353–8386 (2020)....
    • Gaitsgory, D.: Twisted Whittaker model and factorizable sheaves, Selecta Math. (N.S.), 13, (2008), 4, 617–659. https://doi.org/10.1007/s00029-008-0053-0,
    • Gaitsgory, D.: Quantum Langlands Correspondence, preprint, available at arXiv:1601.05279,
    • Gaitsgory, D., Lysenko, S.: Parameters and duality for the metaplectic geometric Langlands theory, Selecta Math. (N.S.), 24, (2018), 1, 227–301....
    • Gan, W.T., Gao, F.: The Langlands-Weissman program for Brylinski-Deligne extensions, English, with English and French summaries, L-groups...
    • Gao, F.: Distinguished theta representations for certain covering groups. Pacific J. Math. 290(2), 333– 379 (2017). https://doi.org/10.2140/pjm.2017.290.333
    • Gao, F., Gurevich, N., Karasiewicz, E.: Genuine pro-p Iwahori–Hecke algebras, Gelfand–Graev representations, and some applications, J. Eur....
    • Gao, F., Shahidi, F., Szpruch, D.: Local coefficients and gamma factors for principal series of covering groups. Mem. Amer. Math. Soc. 283(1399),...
    • Gao, F., Shahidi, F., Szpruch, D.: Restrictions, L-parameters, and local coefficients for genuine representations, Memoires SMF (2023, accepted),...
    • Gao, F., Tsai, W.-Y.: On the wavefront sets associated with theta representations. Math. Z. 301(1), 1–40 (2022). https://doi.org/10.1007/s00209-021-02894-5
    • Green, R.M.: The affine q-Schur algebra. J. Algebra 215(2), 379–411 (1999). https://doi.org/10.1006/ jabr.1998.7753
    • Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Inst. Hautes Études...
    • Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. Invent. Math. 211(2), 591–685...
    • Kazhdan, D.A., Patterson, S.J.: Metaplectic forms. Inst. Hautes Études Sci. Publ. Math. 59, 35–142 (1984)
    • Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009). https://doi.org/10.1090/S1088-4165-09-00346-X
    • Lysenko, S.: Twisted Whittaker models for metaplectic groups. Geom. Funct. Anal. 27(2), 289–372 (2017). https://doi.org/10.1007/s00039-017-0403-1
    • McNamara, P. J.: Principal series representations of metaplectic groups over local fields, Multiple Dirichlet series, L-functions and automorphic...
    • McNamara, P.J.: The metaplectic Casselman-Shalika formula. Trans. Amer. Math. Soc. 368(4), 2913– 2937 (2016). https://doi.org/10.1090/tran/6597
    • Miemietz V., Stroppel, C.: Affine quiver Schur algebras and p-adic GLn, Selecta Math. (N.S.), 25, (2019), 2, Paper No. 32, 66, 1022-1824....
    • Orlik, P., Solomon, L.: Coxeter arrangements, Singularities, Part 2, address=Arcata, Calif.,: Proc. Sympos. Pure Math., 40, Amer. Math....
    • Roche, A.: The Bernstein decomposition and the Bernstein centre, Ottawa lectures on admissible representations of reductive p-adic groups,...
    • Rodier, F.: Whittaker models for admissible representations of reductive p-adic split groups, Harmonic analysis on homogeneous spaces, address=Proc....
    • Rouquier, R.: 2-Kac-Moddy algebras, available at arXiv:0812.5023
    • Sahi, S., Stokman, J.V., Venkateswaran, V.: Metaplectic representations of Hecke algebras, Weyl group actions, and associated polynomials,...
    • Savin, G.: On unramified representations of covering groups. J. Reine Angew. Math. 566, 111–134 (2004)
    • Solomon, L.: The orders of the finite Chevalley groups. J. Algebra 3, 376–393 (1966). https://doi.org/ 10.1016/0021-8693(66)90007-X
    • Sommers, E.: A family of affine Weyl group representations. Transform. Groups 2(4), 375–390 (1997). https://doi.org/10.1007/BF01234541
    • Vignéras, M.: Schur algebras of reductive p-adic groups. I, Duke Math. J., 116, (2003), 1, 35–75. https://doi.org/10.1215/S0012-7094-03-11612-9,
    • Zou, J.: Local metaplectic correspondence and applications. Math. Z. 305(43) (2023). https://doi.org/10.1007/s00209-023-03368-6

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno