Ir al contenido

Documat


Duality via convolution of W-algebras

  • Thomas Creutzig [3] ; Andrew R. Linshaw [1] ; Shigenori Nakatsuka [4] ; Ryo Sato [2]
    1. [1] University of Denver

      University of Denver

      Estados Unidos

    2. [2] Aichi Institute of Technology

      Aichi Institute of Technology

      Japón

    3. [3] Department Mathematik, FAU Erlange ,Germany n-Nürnberg,
    4. [4] Department Mathematik, FAU Erlange ,Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01050-9
  • Enlaces
  • Resumen
    • Feigin-Frenkel duality is the isomorphism between the principal W-algebras of a simple Lie algebra g and its Langlands dual Lie algebra L g. A generalization of this duality to a larger family of W-algebras called hook-type was recently conjectured by Gaiotto and Rapˇcák and proved by the first two authors. It says that the affine cosets of two different hook-type W-(super)algebras are isomorphic. A natural question is whether the duality between the affine cosets can be enhanced to reconstruct one W-algebra from the other. There is a convolution operation that maps a hook-type Walgebra W to a certain relative semi-infinite cohomology of W tensored with a suitable kernel VOA. The first two authors conjectured previously that this cohomology is isomorphic to the Feigin-Frenkel dual hook-type W-algebra. Our main result is a proof of this conjecture.

  • Referencias bibliográficas
    • Arakawa,T.: Chiral algebras of class S and Moore-Tachikawa symplectic varieties, arXiv:1811.01577 [math.RT]
    • Arakawa, T., Creutzig, T., Linshaw, A.R.: W-algebras as coset vertex algebras. Invent. Math. 218(1), 145–195 (2019). https://doi.org/10.1007/s00222-019-00884-3
    • Arkhipov, S., Gaitsgory, D.: Differential operators on the loop group via chiral algebras. Int. Math. Res. Not. 2002(4), 165–210 (2002). https://doi.org/10.1155/S1073792802102078
    • Braverman, A., Finkelberg, M., Ginzburg, V., Travkin, R.: Mirabolic Satake equivalence and supergroups. Compos. Math. 157(8), 1724–1765 (2021)....
    • Braverman, A., Finkelberg, M., Travkin, R.: Orthosymplectic Satake equivalence. Commun. Number Theory Phys. 16(4), 695–732 (2022). https://doi.org/10.4310/CNTP.2022.v16.n4.a2
    • Braverman,A., Finkelberg,M., Travkin,R.: Orthosymplectic Satake equivalence, II, arXiv:2207.03115 [math.RT]
    • Coulembier,K.: Homological algebra for osp(1/2n), Advances in Lie superalgebras, Springer INdAM Ser., 7, 19–34, Springer, Cham, 2014
    • Creutzig,T.: Tensor categories of weight modules of sl2 at admissible level, arXiv:2311.10240 [math.RT]
    • Creutzig, T., Feigin, B., Linshaw, A.R.: N = 4 superconformal algebras and diagonal cosets. Int. Math. Res. Not. IMRN 2022(3), 2180–2223...
    • Creutzig, T., Gaiotto, D.: Vertex Algebras for S-duality. Comm. Math. Phys. 379(3), 785–845 (2020). https://doi.org/10.1007/s00220-020-03870-6
    • Creutzig, T., Gaiotto, D., Linshaw, A.R.: S-duality for the Large N = 4 Superconformal Algebra. Comm. Math. Phys. 374(3), 1787–1808 (2020). ...
    • Creutzig, T., Genra, N., Linshaw, A.R.: Category O for vertex algebras of osp1|2n. J. Reine Angew. Math. 817, 1–31 (2024). https://doi.org/10.1515/crelle-2024-0060
    • Creutzig, T., Genra, N., Nakatsuka, S.: Duality of subregular W-algebras and principal Wsuperalgebras. Adv. Math. 383, 107685 (2021). https://doi.org/10.1016/j.aim.2021.107685
    • Creutzig, T., Genra, N., Nakatsuka, S., Sato, R.: Correspondences of categories for subregular Walgebras and principal W-superalgebras. Comm....
    • Creutzig, T., Hikida, Y., Stockall, D.: Correlator correspondences for subregular W-algebras and principal W-superalgebras. JHEP 2021(10),...
    • Creutzig, T., Hikida, Y.: Correlator correspondences for Gaiotto-Rapˇcák dualities and first order formulation of coset models. JHEP 2021(12),...
    • Creutzig, T., Hikida, Y.: FZZ-triality and large N = 4 super Liouville theory. Nuclear Phys. B 977, 115734 (2022). https://doi.org/10.1016/j.nuclphysb.2022.115734
    • Creutzig, T., Hikida, Y.: Higher rank FZZ-dualities. JHEP 2021(2), 140 (2021). https://doi.org/10. 1007/JHEP02(2021)140
    • Creutzig, T., Kanade, S., McRae, R.: Gluing vertex algebras. Adv. Math. 396, 108174 (2022). https:// doi.org/10.1016/j.aim.2021.108174
    • Creutzig, T., Linshaw, A.R.: Trialities of W-algebras. Camb. J. Math. 10(1), 69–194 (2022). https:// doi.org/10.4310/CJM.2022.v10.n1.a2
    • Creutzig, T., Linshaw, A.R.: Trialities of orthosymplectic W-algebras. Adv. Math. 409, 108678 (2022). https://doi.org/10.1016/j.aim.2022.108678
    • De Sole, A., Kac, V.: Finite vs affine W-algebras. Jpn. J. Math. 1(1), 137–261 (2006). https://doi.org/ 10.1007/s11537-006-0505-2
    • Dong, C., Li, H., Mason, G.: Compact automorphism groups of vertex operator algebras. Internat. Math. Res. Notices 1996(18), 913–921 (1996)....
    • Fasquel,J., Nakatsuka,S.: Orthosymplectic Feigin-Semikhatov duality, arXiv:2307.14574 [math.RT]
    • Feigin, B.: Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras. Uspekhi Mat. Nauk 39(2), 195–196 (1984). https://doi.org/10.1070/RM1984v039n02ABEH003112
    • Feigin, B., Frenkel, E.: A family of representations of affine Lie algebras. Uspekhi Mat. Nauk 43(5), 227–228 (1988). https://doi.org/10.1070/RM1988v043n05ABEH001935
    • Feigin,B., Frenkel,E.: Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B, 246 (1)-(2):75– 81, 1990. https://doi.org/10.1016/0370-2693(90)91310-8
    • Feigin, B., Frenkel, E.: Duality in W-algebras. Internat. Math. Res. Notices 1991(6), 75–82 (1991). https://doi.org/10.1155/S1073792891000119
    • Frenkel,E.: Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, 103, Cambridge University Press, Cambridge,...
    • Frenkel, E.: Wakimoto modules, opers and the center at the critical level. Adv. Math. 195(2), 297–404 (2005). https://doi.org/10.1016/j.aim.2004.08.002
    • Frenkel, E., Gaiotto, D.: Quantum Langlands dualities of boundary conditions, D-modules, and conformal blocks. Commun. Num. Theory Phys. 14(2),...
    • Frenkel, I., Garland, H., Zuckerman, G.: Semi-infinite cohomology and string theory. Proc. Nat. Acad. Sci. U.S.A. 83(22), 8442–8446 (1986)....
    • Frenkel, I., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168...
    • Fuks,D.: Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Translated from the Russian by A. B. Sosinski˘ı,...
    • Fulton, W., Harris, J.: Representation theory, Graduate Texts in Mathematics, 129, A first course, Readings in Mathematics, Springer-Verlag....
    • Feigin, B., Semikhatov, A.M.: W(2) n -algebras. Nucl. Phys. B 698, 409–449 (2004). https://doi.org/10. 1016/j.nuclphysb.2004.06.056
    • Genra,N.: Screening operators for W-algebras, Selecta Math. (N.S.) 23, (3):2157-2202, 2017. AG GMS1, AG GMS2. https://doi.org/10.1007/s00029-017-0315-9
    • Gorbounov, V., Malikov, F., Schechtman, V.: Gerbes of chiral differential operators. Math. Res. Lett. 7(1), 55–66 (2000). https://doi.org/10.4310/MRL.2000.v7.n1.a5
    • Gorbounov, V., Malikov, F., Schechtman, V.: On chiral differential operators over homogeneous spaces. Int. J. Math. Math. Sci. 26(2), 83–106...
    • Gaiotto,D., Rapˇcák,M.: Vertex Algebras at the corner, JHEP 2019 (1): Paper No. 160, 2019. https:// doi.org/10.1007/JHEP01(2019)160
    • Kac,V., Roan,S., Wakimoto,M.: Quantum reduction for affine superalgebras, Comm. Math. Phys., 241, (2)-(3):307–342, 2003. https://doi.org/10.1007/s00220-003-0926-1
    • Kac, V., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185(2), 400–458 (2003). https://doi.org/10.1016/j.aim.2003.12.005
    • Kanade, S., Linshaw, A.R.: Universal two-parameter even spin W∞-algebra. Adv. Math. 355, 106774 (2019). https://doi.org/10.1016/j.aim.2019.106774
    • Klimyk,A., Schmüdgen,K.: Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997, xx+552....
    • Lepowsky,J., Li,H.: Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc.,...
    • Li, H.: Determining fusion rules by Zhu’s bimodules. J. Algebra 212(2), 515–556 (1999). https://doi. org/10.1006/jabr.1998.7655
    • Linshaw, A.R.: Universal two-parameter W∞-algebra and vertex algebras of type W(2, 3,..., N). Compos. Math. 157(1), 12–82 (2021). https://doi.org/10.1112/S0010437X20007514
    • Malikov, F., Schechtman, V., Vaintrob, A.: Chiral de Rham complex. Comm. Math. Phys. 204(2), 439–473 (1999). https://doi.org/10.1007/s002200050653
    • Moriwaki,Y.: Quantum coordinate ring in WZW model and affine vertex algebra extensions, Selecta Math. (N.S.), 28(4):68, 2022. https://doi.org/10.1007/s00029-022-00782-2
    • Moriwaki,Y.: Vertex operator algebra and parenthesized braid operad, arXiv:2209.10443 [math.QA]
    • Rittenberg, V., Scheunert, M.: A remarkable connection between the representations of the Lie superalgebras osp(1, 2n) and the Lie algebras...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno