Ir al contenido

Documat


Arboreal tensor categories

  • Nate Harman [1] ; Ilia Nekrasov [2] ; Andrew Snowden [3]
    1. [1] University of Georgia

      University of Georgia

      Estados Unidos

    2. [2] University of California System

      University of California System

      Estados Unidos

    3. [3] University of Michigan–Ann Arbor

      University of Michigan–Ann Arbor

      City of Ann Arbor, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01058-1
  • Enlaces
  • Resumen
    • We introduce some new symmetric tensor categories based on the combinatorics of trees: a discrete family D(n), for n ≥ 3 an integer, and a continuous family C(t), for t = 1 a complex number. The construction is based on the general oligomorphic theory of Harman–Snowden, but relies on two non-trivial results we establish. The first determines the measures for the class of trees, and the second is a semi-simplicity theorem. These categories have some notable properties: for instance, C(t) is the first example of a 1-parameter family of pre-Tannakian categories of superexponential growth that cannot be obtained by interpolating categories of moderate growth.

  • Referencias bibliográficas
    • Cameron, Peter J.: Oligomorphic permutation groups. London Mathematical Society Lecture Note Series, vol. 152, Cambridge University Press,...
    • Cameron, Peter J.: Some treelike objects. Q. J. Math. 38(38), 155–183 (1987). https://doi.org/10.1093/ qmath/38.2.155
    • Church, Thomas, Farb, Benson: Representation theory and homological stability. Adv. Math. 245, 250–314 (2013). https://doi.org/10.1016/j.aim.2013.06.016....
    • Comes, Jonathan, Ostrik, Victor: On Deligne’s category Repab(Sd ). Algebra Number Theory 8, 473– 496 (2014). https://doi.org/10.2140/ant.2014.8.473....
    • Deligne, P.: Catégories tensorielles. Mosc. Math. J. 2 (2002), no. 2, pp. 227–248. https://doi. org/10.17323/1609-4514-2002-2-2-227-248 Available...
    • Deligne, P.: La catégorie des représentations du groupe symétrique St , lorsque t n’est pas un entier naturel. In: Algebraic Groups and Homogeneous...
    • Deligne, P., Milne, J.: Tannakian Categories. In “Hodge cycles, motives, and Shimura varieties,” Lecture Notes in Math., vol. 900, Springer–Verlag,...
    • Etingof, Pavel, Gelaki, Shlomo, Nikshych, Dmitri, Ostrik, Victor: Tensor categories. Mathematical Surveys and Monographs, 205. American Mathematical...
    • Etingof, Pavel, Ostrik, Victor: On semisimplification of tensor categories. In: “Representation Theory and Algebraic Geometry,” eds. Vladimir...
    • Harary, Frank: Graph Theory. Addison–Wesley, (1969)
    • Harman, Nate: Andrew Snowden. Oligomorphic groups and tensor categories. arxiv:2204.04526
    • Harman, Nate, Snowden, Andrew: Combinatorial tensor categories and Fraïssé’s theorem. arxiv:2301.13784
    • Harman, Nate, Snowden, Andrew, Snyder, Noah: The Delannoy category. Duke Math. J., to appear. arxiv:2211.15392
    • Harman, Nate, Snowden, Andrew, Snyder, Noah: The circular Delannoy category. arxiv:2303.10814
    • Knop, Friedrich: A construction of semisimple tensor categories. C. R. Math. Acad. Sci. Paris C 343 (2006), no. 1, pp. 15–18. https://doi.org/10.1016/j.crma.2006.05.009...
    • Knop, Friedrich: Tensor envelopes of regular categories. Adv. Math. 214, 571–617 (2007). https://doi. org/10.1016/j.aim.2007.03.001. arxiv:math/0610552
    • Knop, Friedrich: Multiplicities and dimensions in enveloping tensor categories. arxiv:2209.10337
    • Kriz, Sophie: Quantum Delannoy categories. Available at: https://krizsophie.github.io/
    • Macpherson, Dugald: A survey of homogeneous structures. DiscreteMath. 311(15), 1599–1634 (2011). https://doi.org/10.1016/j.disc.2011.01.024
    • Pólya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68, 145–254 (1937). https://doi.org/10.1007/BF02546665
    • Nekrasov, Ilia: Tensorial measures on omega-categorical structures (Ph. D. thesis). In: preparation
    • Snowden, Andrew: Some fast-growing tensor categories. arxiv:2305.18230
    • Snowden, Andrew: On the representation theory of the symmetry group of the Cantor set. arxiv:2308.06648

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno