Ir al contenido

Documat


Higher arity stability and the functional order property

  • A. Abd Aldaim [1] ; G. Conant [2] ; C. Terry [2]
    1. [1] Ohio State University

      Ohio State University

      City of Columbus, Estados Unidos

    2. [2] Department of Mathematics, Statistics, and Computer Science, University of Illinois Chicago, Chicago, IL, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01055-4
  • Enlaces
  • Resumen
    • The k-dimensional functional order property (FOPk ) is a combinatorial property of a (k + 1)-partitioned formula. This notion arose in work of Terry and Wolf [59, 60], which identified NFOP2 as a ternary analogue of stability in the context of two finitary combinatorial problems related to hypergraph regularity and arithmetic regularity. In this paper we show NFOPk has equally strong implications in model-theoretic classification theory, where its behavior as a (k +1)-ary version of stability is in close analogy to the behavior of k-dependence as a (k + 1)-ary version of NIP. Our results include several new characterizations of NFOPk , including a characterization in terms of collapsing indiscernibles, combinatorial recharacterizations, and a characterization in terms of type-counting when k = 2. As a corollary of our collapsing theorem, we show NFOPk is closed under Boolean combinations, and that FOPk can always be witnessed by a formula where all but one variable have length 1. When k = 2, we prove a composition lemma analogous to that of Chernikov and Hempel from the setting of 2-dependence. Using this, we provide a new class of algebraic examples of NFOP2 theories. Specifically, we show that if T is the theory of an infinite dimensional vector space over a field K, equipped with a bilinear form satisfying certain properties, then T is NFOP2 if and only if K is stable. Along the way we provide a corrected and reorganized proof of Granger’s quantifier elimination and completeness results for these theories.

  • Referencias bibliográficas
    • Abramson, F.G., Harrington, L.A.: Models without indiscernibles. J. Symbolic Logic 43(3), 572–600 (1978)
    • Ahn, J., Kim, J., Lee, J.: On the antichain tree property. J. Math. Log. 23(2), 2250021 (2023)
    • Baudisch, A.: Neostability-properties of Fraissé limits of 2-nilpotent groups of exponent p>2. Arch. Math. Logic 55, 397–403 (2016)
    • Boissonneau B., Papadopoulos A., and Touchard P.: Mekler’s Construction and Murphy’s Law for 2-Nilpotent Groups (2024) arXiv:2403.20270
    • Cherlin, G., Harrington, L., Lachlan, A.H.: ℵ0-categorical, ℵ0-stable structures. Ann. Pure Appl. Logic 28(2), 103–135 (1985)
    • Cherlin, G., Hrushovski, E.: Finite structures with few types, Annals of Mathematics Studies, vol. 152. Princeton University Press, Princeton,...
    • Chernikov, A.: Theories without the tree property of the second kind. Ann. Pure Appl. Logic 165(2), 695–723 (2014)
    • Chernikov, Artem, Hempel, Nadja: On n-dependent Groups and Fields II, Forum of Mathematics. Sigma 9, E38 (2021)
    • Chernikov, Artem, Hempel, Nadja: Mekler’s construction and generalized stability. Israel J. Math. 230(2), 745–769 (2019)
    • Chernikov, Artem, Hempel, Nadja: On n-dependent groups and fields iii. multilinear forms and invariant connected components (2024) arXiv:2412.19921
    • Chernikov, A., Kaplan, I.: Forking and dividing in NTP2 theories. J. Symbolic Logic 77(1), 1–20 (2012)
    • Chernikov, A., Towsner, H.: Hypergraph regularity and higher arity VC-dimension (2020) arXiv:2010.00726
    • Chernikov, Artem, Palacín, Daniel, Takeuchi, Kota: On n-dependence. Notre Dame Journal of Formal Logic 60(2), 195–214 (2019)
    • Conant, G., Pillay, A., Terry, C.: A group version of stable regularity. Math. Proc. Cambridge Philos. Soc. 168(2), 405–413 (2020)
    • Conant, G.: Quantitative structure of stable sets in arbitrary finite groups. Proc. Amer. Math. Soc. 149(9), 4015–4028 (2021)
    • d’Elbée, C., Kaplan, I., Neuhauser, L.: On algebraically closed fields with a distinguished subfield. Isr. J. Math. (2021). https://doi.org/10.1007/s11856-024-2621-1
    • Dobrowolski, J.: Sets, groups, and fields definable in vector spaces with a bilinear form, Annales de l’Institut Fourier (2023). https://doi.org/10.5802/aif.3559
    • Dobrowolski, J., Kim, B., Ramsey, N.: Independence over arbitrary sets in NSOP1 theories, Annals of Pure and Applied Logic (2022). https://doi.org/10.1016/j.apal.2021.103058
    • Erd ˝os, P., Makkai, M.: Some remarks on set theory. X. Studia Sci. Math. Hungar. 1, 157–159 (1966)
    • Evans, David, Hubiˇcka, Jan, Nešetˇril, Jaroslav: Ramsey properties and extending partial automorphisms for classes of finite structures....
    • Felgner, U.: On ℵ0-categorical extra-special p-groups, Logique et Anal. 18, no. 71/72, 407–28 (1975). http://www.jstor.org/stable/44083993
    • Granger, Nicolas: Stability, simplicity and the model theory of bilinear forms, PhD Thesis, University of Manchester, Manchester (1999)
    • Gross, Herbert: Quadratic Forms in Infinite Dimensional Vector Spaces, Progress in Mathematics, vol. 1. Springer, New York, NY (1979)
    • Halevi, Y., Kaplan, I.: Saturated models for the working model theorist. Bull. Symbolic Logic (2021). https://doi.org/10.1017/bsl.2023.6
    • Hempel, N.: On n-dependent groups and fields. MLQ Math. Log. Q. 62(3), 215–224 (2016)
    • Hrushovski, E.: On pseudo-finite dimensions. Notre Dame J. Form. Log. 54(3–4), 463–495 (2013)
    • Hrushovski, E., Peterzil, Y., Pillay, A.: Groups, measures, and the NIP. J. Amer. Math. Soc. 21(2), 563–596 (2008)
    • Hrushovski, E., Pillay, A.: On NIP and invariant measures. J. Eur. Math. Soc. (JEMS) 13(4), 1005–1061 (2011)
    • Hrushovski, E., Pillay, A., Simon, P.: Generically stable and smooth measures in NIP theories. Trans. Amer. Math. Soc. 365(5), 2341–2366 (2013)
    • Hubiˇcka, Jan, Nešetˇril, Jaroslav: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms). Advances in Mathematics...
    • Kaplan, I., Ramsey, N.: On Kim-independence. J. Eur. Math. Soc. (JEMS) 22(5), 1423–1474 (2020)
    • Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct....
    • Kim, B.: Simplicity, and stability in there. J. Symbolic Logic 66(2), 822–836 (2001)
    • Kim, B., Pillay, A.: Simple theories, Ann. Pure Appl. Logic 88(2-3), 149–164, Joint AILA-KGS Model Theory Meeting (Florence, 1995). (99b:03049)...
    • Kruckman, A.: Disjoint n-amalgamation and pseudofinite countably categorical theories. Notre Dame J. Form. Log. 60(1), 139–160 (2019)
    • Kuzichev, A.A.: Elimination of quantifiers over vectors in some theories of vector spaces. Z. Math. Logik Grundlag. Math. 38(5–6), 575–577...
    • Macpherson, D.: Homogeneous and smoothly approximated structures, Algebraic model theory (Toronto, ON,: NATO Adv. Sci. Inst. Ser. C: Math....
    • Macpherson, D., Steinhorn, C.: One-dimensional asymptotic classes of finite structures. Transactions of the American Mathematical Society...
    • Malliaris, M., Shelah, S.: Regularity lemmas for stable graphs. Trans. Amer. Math. Soc. 366(3), 1551– 1585 (2014)
    • Marker, D.: Model theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, (2002). (2003e:03060)
    • Milliet, C.: Definable envelopes in groups having a simple theory. J. Algebra 492, 298–323 (2017)
    • Mutchnik, S.: Conant-independence and generalized free amalgamation (2022). arXiv:2210.07527
    • Mutchnik, S.: On NSOP2 theories (2022). arXiv:2206.08512
    • Nešetˇril, J., Rödl, V.: A structural generalization of the Ramsey theorem. Bull. Amer. Math. Soc. 83(1), 127–128 (1977)
    • Nešetˇril, J., Rödl, V.: Partitions of finite relational and set systems. J. Combinatorial Theory Ser. A 22(3), 289–312 (1977)
    • Nešetˇril, J., Rödl, V.: Two proofs of the Ramsey property of the class of finite hypergraphs. European Journal of Combinatorics 3(4), 347–352...
    • Nešetˇril, J., Rödl, V.: Ramsey classes of set systems. J. Comb. Theory Ser. A 34(2), 183–201 (1983)
    • Pillay, A.: Model theory, lecture notes, Fall (2002). https://www3.nd.edu/~apillay/pdf/lecturenotes_ modeltheory.pdf
    • Scow, Lynn: Indiscernibles, EM-Types, and Ramsey Classes of Trees. Notre Dame Journal of Formal Logic 56(3), 429–447 (2015)
    • Scow, Lynn: Characterization of NIP theories by ordered graph-indiscernibles. Annals of Pure and Applied Logic 163(11), 1624–1641 (2012)
    • Shelah, S.: Classification theory and the number of nonisomorphic models, second ed., Studies in Logic and the Foundations of Mathematics,...
    • Shelah, S.: Strongly dependent theories. Israel Journal of Mathematics 205(1), 1–83 (2014)
    • Shelah, S.: Definable groups for dependent and 2-dependent theories, Sarajevo J. Math. 13(25), no. 1, 3–25 (2017)
    • Simon, P.: On dp-minimal ordered structures. J. Symbolic Logic 76(2), 448–460 (2011)
    • Simon, P.: A guide to NIP theories. Lecture Notes in Logic, vol. 44. IL; Cambridge Scientific Publishers,Cambridge, Association for Symbolic...
    • Takeuchi, Kota: On 2-order property [Conference presentation abstract], The Bulletin of Symbolic Logic, no. 4, 467–483, Association for Symbolic...
    • Terry, C., Wolf, J.: Stable arithmetic regularity in the finite field model. Bull. Lond. Math. Soc. 51(1), 70–88 (2019)
    • Terry, C., Wolf, J.: Quantitative structure of stable sets in finite abelian groups. Trans. Amer. Math. Soc. 373(6), 3885–3903 (2020)
    • Terry, C., Wolf, J.: Higher-order generalizations of stability and arithmetic regularity (2021). arXiv:2111.01739
    • Terry, C., Wolf, J.: Irregular Triads in 3-uniform hypergraphs (2021). arXiv:2111.01737
    • Torrezão de Sousa, S., Truss, J.K.: Countable homogeneous coloured partial orders. Dissertationes Math. 455, 48 (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno