Ir al contenido

Documat


Two proofs of a Jantzen Conjecture for Whittaker modules

  • Jens Niklas Eberhardt [1] ; Anna Romanov [2]
    1. [1] Johannes Gutenberg University of Mainz

      Johannes Gutenberg University of Mainz

      Kreisfreie Stadt Mainz, Alemania

    2. [2] University of New South Wales, Sydney, Australia
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01057-2
  • Enlaces
  • Resumen
    • We define a filtration of a standard Whittaker module over a complex semisimple Lie algebra and and establish its fundamental properties. Our filtration specializes to the Jantzen filtration of a Verma module for a certain choice of parameter. We prove that embeddings of standard Whittaker modules are strict with respect to our filtration, and that the filtration layers are semisimple. This provides a generalization of the Jantzen conjectures to Whittaker modules. We prove these statements in two ways. First, we give an algebraic proof which compares Whittaker modules to Verma modules using a functor introduced by Backelin. Second, we give a geometric proof using mixed twistor D-modules.

  • Referencias bibliográficas
    • Arias, J.C., Backelin, E.: Projective and Whittaker functors on category O. J. Algebra 574, 154–171 (2021)
    • Backelin, E.: Representation of the category O in Whittaker categories. Internat. Math. Res. Notices 4, 153–172 (1997)
    • Barbasch, D.: Filtrations on Verma modules. Ann. Sci. École Norm. Sup. (4) 16(3), 489–494 (1983)
    • Be˘ılinson, A., Bernstein, J.: A proof of Jantzen conjectures. In I. M. Gel’fand Seminar, volume 16 of Adv. Soviet Math., pages 1–50. Amer....
    • Be˘ılinson, A.: How to glue perverse sheaves. In K-theory, arithmetic and geometry (Moscow, 1984– 1986), volume 1289 of Lecture Notes in Math.,...
    • Borel, Armand: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 126. Springer, New York, New York, NY (1991)
    • Brown, A., Romanov, A.: Contravariant forms on Whittaker modules. Proc. Am. Math. Soc. 49(1), 37–52 (2020)
    • Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces. II. Relative enveloping algebras. Bull. Soc. Math. France 117(2),...
    • Brown, A., Romanov, A.: Contravariant pairings between standard Whittaker modules and Verma modules. J. Algebra 609, 145–179 (2022)
    • Bohun, S., Romanov, A.: An example of the Jantzen filtration of a D-module. To appear in J. Aust. Math. Soc (2024)
    • Chriss, N., Ginzburg, V.: Representation theory and complex geometry, volume 42. Springer (1997)
    • Deligne, P.: La conjecture de Weil: II. Publications Mathématiques de l’IHÉS 52, 137–252 (1980)
    • Eberhardt, J. N.: Graded and Geometric Parabolic Induction for Category O (2018). arXiv:1603.00327 [math]
    • Gabber, O., Joseph, A.: Towards the Kazhdan-Lusztig conjecture. Ann. Sci. École Norm. Sup. (4) 14(3), 261–302 (1981)
    • Jantzen, J. C.: Moduln mit einem höchsten Gewicht. In Lecture Notes in Math., page 750. SpringerVerlag, Berlin (1979)
    • Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48, 101–184 (1978)
    • Kübel, J.: From Jantzen to Andersen filtration via tilting equivalence. Math. Scand. 110(2), 161–180 (2012)
    • Kübel, J.: Tilting modules in category O and sheaves on moment graphs. J. Algebra 371, 559–576 (2012)
    • McDowell, E.: On modules induced from Whittaker modules. J. Algebra 96(1), 161–177 (1985)
    • Miliˇci´c, D.: Lectures on Algebraic Theory of D-Modules. Unpublished manuscript available at http:// math.utah.edu/~milicic
    • Miliˇci´c, D.: Localization and representation theory of reductive Lie groups. Unpublished manuscript available at http://math.utah.edu/~milicic
    • Mochizuki, T.: Wild Harmonic Bundles and Wild Pure Twistor D-Modules, volume 340 of Astérisque. Société Mathématique de France (SMF), Paris...
    • Mochizuki, T.: Mixed Twistor D-modules. Lecture Notes in Mathematics. Springer International Publishing (2015)
    • Miliˇci´c, D., Pandži´c, P.: Equivariant Derived Categories, Zuckerman Functors and Localization, pages 209–242. Birkhäuser Boston (1998)
    • Miliˇci´c, D., Soergel, W.: The composition series of modules induced from Whittaker modules. Comment. Math. Helv. 72(4), 503–520 (1997)
    • Miliˇci´c, D., Soergel, W.: Twisted Harish-Chandra sheaves and Whittaker modules: The nondegenerate case. Developments and Retrospectives...
    • Romanov, A.: A Kazhdan-Lusztig algorithm for Whittaker modules. Algebras Represent. Theory 4(1), 81–133 (2021)
    • Sabbah, C.: Polarizable Twistor D-Modules. Astérisque, vol. 300. Société Mathématique de France, Paris (2005)
    • Sabbah, C.: Wild twistor D-modules. In Algebraic Analysis and around in Honor of Professor Masaki Kashiwara’s 60th Birthday, pages 293–353....
    • Saito, M.: Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci. 24(6), 849–995 (1988) Saito, M.: Mixed Hodge modules. Publ. Res. Inst....
    • Shapovalov, N.N.: A certain bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra. Funkcional. Anal. i Priložen....
    • Simpson, C.: Mixed twistor structures (1997). arXiv:9705006 [math]
    • Soergel, W.: Andersen filtration and hard Lefschetz. Geom. Funct. Anal. 17(6), 2066–2089 (2008)
    • Williamson, G.: Local Hodge theory of Soergel bimodules. Acta Math. 217(2), 341–404 (2016)
    • Zhao, Q.: Kazhdan-Lusztig algorithm for Whittaker modules with arbitrary infinitesimal characters. Algebr. Represent. Theory 27(1), 767–814...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno