Ir al contenido

Documat


TR of quasiregular semiperfect rings is eve

  • Micah Darrell [1] ; Noah Riggenbach [2]
    1. [1] Chicago, IL, USA
    2. [2] orthwestern University, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01065-2
  • Enlaces
  • Resumen
    • We show that TR2i−1(S) = 0 for all i ∈ N and all S quasiregular semiperfect. We show this by computing the algebraic K-theory of truncated polynomial algebras over certain quaisregular semiperfect rings and showing that for these rings the topological restriction homology is even via the curves on K-theory description of [9]. We then use prismatic cohomology to go from these cases to the general case.

  • Referencias bibliográficas
    • Antieau, B., Mathew, A., Morrow, M., Nikolaus, T.: On the Beilinson fiber square. Duke Math. J. 171(18), 3707–3806 (2022). https://doi.org/10.1215/00127094-2022-0037....
    • Antieau, B., Nikolaus, T.: Cartier modules and cyclotomic spectra. J. Amer. Math. Soc. 34(1), 1–78 (2021). https://doi.org/10.1090/jams/951....
    • Bhatt, B., Lurie, J.: Absolute prismatic cohomology. (2022). https://doi.org/10.48550/ARXIV.2201.06120. arXiv:2201.06120
    • Bhatt, B., Morrow, M., Scholze, P.: Topological Hochschild homology and integral p-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci....
    • Bhatt, B., Scholze, P.: Prisms and prismatic cohomology. Ann. Math. (2) 196(3), 1135–1275 (2022).https://doi.org/10.4007/annals.2022.196.3.5....
    • Devalapurkar, S.K., Mondal, S: p-typical curves on p-adic Tate twists and de Rham-Witt forms. (2023). arXiv:2309.16623 [math.KT]
    • Dundas, B.I., Goodwillie, T.G., McCarthy, R.: The local structure of algebraic K-theory. Vol. 18.Algebra and Applications. Springer-Verlag...
    • Gwilliam, O., Pavlov, D.: Enhancing the filtered derived category. J. Pure Appl. Algebra 222(11), 3621–3674 (2018). https://doi.org/10.1016/j.jpaa.2018.01.004....
    • Hesselholt, L.: On the p-typical curves in Quillen’s K-theory. Acta Math. 177(1), 1–53 (1996). https://doi.org/10.1007/BF02392597. (ISSN:...
    • Hesselholt, L., Madsen, I.B.: “On the K-theory of nilpotent endomorphisms”. In: Homotopy methods in algebraic topology (Boulder, CO, 1999)....
    • Illusie, L.: Complexe cotangent et déformations. I. Lecture Notes in Mathematics, Vol. 239. SpringerVerlag, Berlin-New York, pp. xv+355...
    • Land, M., Tamme, G.: On the K-theory of pullbacks. Ann. Math. (2) 190(3), 877–930 (2019). https://doi.org/10.4007/annals.2019.190.3.4. (ISSN:...
    • Mathew, A.: Some recent advances in topological Hochschild homology. Bull. Lond. Math. Soc. 54(1),1–44 (2022). https://doi.org/10.1112/blms.12558....
    • McCandless, J: On curves in K-theory and TR. (2021). https://doi.org/10.48550/ARXIV.2102.08281. arXiv:2102.08281
    • Riggenbach, N.: K-Theory of Truncated Polynomials. (2023). arXiv:2211.11110 [math.KT]
    • Sulyma, Y.J.F.: Floor, ceiling, slopes, and K-theory. (2021). https://doi.org/10.48550/ARXIV.2110.04978. arXiv:2110.04978

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno