Ir al contenido

Documat


Disease Dynamics of a Probabilistic Model with Vaccination Under Regime Switching

  • T. Caraballo [1] Árbol académico ; A. Nait Brahim [2] ; A. Settat [2] ; A. Lahrouz [2] ; T. Amtout [2]
    1. [1] Universidad de Sevilla

      Universidad de Sevilla

      Sevilla, España

    2. [2] Abdelmalek Essaâdi University

      Abdelmalek Essaâdi University

      Marruecos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The dynamics of a SIS epidemic model with vaccination and a saturated incidence rate in specific stochastic environments are examined with vaccination and a saturated incidence rate in specific stochastic environments. The study focuses on the system’s long-term behavior and aims to establish sufficient conditions for disease extinction and persistence. In cases where persistence occurs, a stationary distribution is investigated. Additionally, it is proven that the density functions converge in L1 to an invariant density under certain conditions. These results enhance understanding of the SIS epidemic model with vaccination, building upon and extending previous research in this field.

  • Referencias bibliográficas
    • 1. World Health Organization, http://www.who.int/topics/vaccines/en/
    • 2. Moghadas, S.M., Gumel, A.B.: A mathematical study of a model for childhood diseases with nonpermanent immunity. J. Comput. Appl. Math....
    • 3. Kermark, M., Mckendrick, A.: Contributions to the mathematical theory of epidemics. Part I. Proc. Roy. Soc. A 115, 700–721 (1927)
    • 4. Arino, J., Connell Mccluskey, C., van den Driessche, P.: Global results for an epidemic model with vaccination that exhibits backward bifurcation....
    • 5. D’Onofrio, A.: Mixed pulse vaccination strategy in an epidemic model with realistically distributed infectious and latent times. Appl....
    • 6. Zhang, X., Jiang, D., Alsaedi, A., Hayat, T.: Stationary distribution of a stochastic SIS epidemic model with vaccination under regime...
    • 7. Miao, A., Zhang,J., Zhang,T.: BGSA. Pradeep, Threshold Dynamics of a Stochastic SIR Model with Vertical Transmission and Vaccination, Computational...
    • 8. Hu, J., Li, Z., Zeng, T., Teng, Z.: A Note on the Stationary Distribution of Stochastic SIS Epidemic Model with Vaccination Under Regime...
    • 9. Hu, J., Teng, Z., Li, Z., Wen, B.: The threshold dynamics in a stochastic SIS epidemic model with vaccination and nonlinear incidence under...
    • 10. Liu, Q., Jiang, D., Hayat, T., Alsaed, A.: Dynamical behavior of a hybrid switching SIS epidemic model with vaccination and Lévy jumps....
    • 11. Zhang, X-B. , Zhang,X-H.: The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size, Applied...
    • 12. Zhang, X.-B., Zheng, L.: Complex Dynamics of a Stochastic SIR Epidemic Model with Vertical Transmission and Varying Total Population Size....
    • 13. Li, J., Ma, Z.: Qualitative analysis of SIS epidemic model with vaccination and varying total population size. Math. Comput. Modeling...
    • 14. Li, J., Ma, Z.: Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete Contin. Dyn. Syst....
    • 15. Caraballo Garrido, T., Settati, A., El Fatini, M., Lahrouz, A., Imlahi, A.: Global stability and positive recurrence of a stochastic SIS...
    • 16. Lahrouz, A., Settati, A., El Fatini, M., Tridane, A.: The effect of a generalized nonlinear incidence rate on the stochastic SIS epidemic...
    • 17. Settati, A., Lahrouz, A., Assadouq, A., El Fatini, M., El Jarroudi, M., Wang, K.: The impact of nonlinear relapse and reinfection to derive...
    • 18. El Haitami, A., Settati, A., Lahrouz, A., El Idrissi, M., El Merzguioui, M.: A stochastic switched SIRI epidemic model integrating nonlinear...
    • 19. Settati, A., Lahrouz, A., Zahri, M., Tridane, A., El Fatini, M., El Mahjour, H., Seaid, M.: A stochastic threshold to predict extinction...
    • 20. Settati, A., Lahrouz, A., El Fatini, M., El Haitami,A., El Jarroudi,M. , Erriani,M.: A Markovian Switching Diffusion for an SIS Model...
    • 21. Bouzalmat, I., El Idrissi,M., Settati, A., Lahrouz, A.: Stochastic SIRS epidemic model with perturbation on immunity decay rate. J. Appl....
    • 22. El Idrissi, M., Harchaoui, B., Nait Brahim, A., Bouzalmat, I., Settati, A., Lahrouz, A.: A sufficient condition for extinction and stability...
    • 23. Caraballo Garrido, T., Settati, A., Lahrouz, A., Boutouil, S., Harchaoui, B.: On the stochastic threshold of the COVID-19 epidemic model...
    • 24. Settati, A., Hamdoune, S., Imlahi, A., Akharif, A.: Extinction and persistence of a stochastic GilpinAyala model under regime switching...
    • 25. Settati, A., Lahrouz, A.: Stability and ergodicity of a stochastic Gilpin-Ayala model under regime switching on patches. Int. J. Biomath....
    • 26. Caraballo, T.G., Settati, A., Lahrouz, A., Boutouil, S., Harchaoui, B.: On the stochastic threshold of the COVID-19 epidemic model incorporating...
    • 27. Settati, A., Lahrouz, A., El Jarroudi, M., El Fatini,M., Wang,K.: On the threshold dynamics of the stochastic SIRS epidemic model using...
    • 28. T. Caraballo Garrido, I. Bouzalmat, A. Settati, A. Lahrouz, A. Nait Brahim, B. Harchaoui, Stochastic COVID-19 epidemic model incorporating...
    • 29. Lahrouz, A., Settati, A., El Mahjour, H., El Jarroudi, M., El Fatini, M.: Global dynamics of an epidemic model with incomplete recovery...
    • 30. Settati, A., Lahrouz, A., El Jarroudi, M., El Jarroudi, M.: Dynamics of hybrid switching diffusions SIRS model. J. Appl. Math. Comput....
    • 31. Assadouq, A., El Mahjour, H., Settati, A.: Qualitative behavior of a SIRS epidemic model with vaccination on heterogeneous networks. Ital....
    • 32. Assadouq, A., Settati, A., El Myr, A.: Qualitative Analysis of a SIR Epidemic Model with a Nonlinear Relapse and Incidence Rate Stochastically...
    • 33. El Idrissi, M., Settati, A., Lahrouz, A., Assadouq, A., El Jarroudi, M., Er-Riani, M., Boujoudar, M.: Stochastic Modeling of Nonlinear...
    • 34. Aznague, S., Harchaoui, B., Brahim, A. N., Settati, A., Lahrouz, A., Amtout,T., El Idrissi, M.: A Stochastic SIR Epidemic with Non-linear...
    • 35. Aznague, S., El Idrissi, M., Brahim, A.N., Harchaoui, B., Boutouil, S., Settati, A., Lahrouz, A., El Merzguioui, M., El Amrani, J.: A...
    • 36. Boutouil, S., Harchaoui, B., Settati, A., Lahrouz, A., Nait, A., El Jarroudi, M., Erriani, M.: Analyzing Stochastic SIRS Dynamics Under...
    • 37. Harchaoui, B., Boutouil,S., Settati, A., Lahrouz, A., El Idrissi,M., El Jarroudi, M.:Stochastic SIRI epidemic model with global incidence...
    • 38. Taki, R., El Fatini, M., El Khalifi, M., Lakhal, M., Wang, K.: Understanding death risks of Covid-19 under media awareness strategy: a...
    • 39. Lakhal, M., Taki, R., El Fatini, M., El Guendouz, T.: Quarantine alone or in combination with treatment measures to control COVID-19....
    • 40. Lakhal, M., El Guendouz, T., Taki, R., El Fatini, M.: The Threshold of a Stochastic SIRS Epidemic Model with a General Incidence. Bulletin...
    • 41. Mdaghri, A., Lakhal, M., Taki,R., El Fatini,M.: Ergodicity and stationary dis- tribution of a stochastic SIRI epidemic model with logistic...
    • 42. Zhao, Y., Jiang, D.: The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243, 718–727 (2014)
    • 43. Lin, Y., Jiang, D.,Wang, S.: Stationary distribution of a stochastic SIS epidemic model with vaccination. Phys. A 394, 187–197 (2014)
    • 44. Slatkin, M.: The dynamics of a population in a Markovian environment. Ecology 59, 249–256 (1978)
    • 45. Takeuchi, Y., Du, N.H., Hieu, N.T., Sato, K.: Evolution of predator-prey systems described by a LotkaVolterra equation under random environment....
    • 46. Du, N.H., Kon, R., Sato, K., Takeuchi, Y.: Dynamical behavior of Lotka-Volterra competition systems: nonautonomous bistable case and the...
    • 47. Gray, A., Greenhalgh, D., Mao, X., Pan, J.: The SIS epidemic model with Markovian switching. J. Math. Anal. Appl. 394, 496–516 (2012)
    • 48. Lahrouz, A., Settati, A.: Asymptotic properties of switching diffusion epidemic model with varying population size. Appl. Math. Comput....
    • 49. Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control. Optim. 46, 1155–1179 (2007)
    • 50. Mao, X.: Stochastic Differential Equations and Applications, Horwood Publishing Limited, (1997)
    • 51. Khasminskii, R.Z., Zhu, C., Yin, G.: Stability of regime-switching diffusions. Stoch. Process. Appl 117, 1037–105 (2007)
    • 52. Yuan, C., Mao, X.: Asymptotic stability in distribution of stochastic differential equations with Markovian switching. Stochastic Processes...
    • 53. Makowski, M. Armand, A. Shwartz. The Poisson equation for countable Markov chains: probabilistic methods and interpretations, Handbook...
    • 54. R.Khasminskii, Stochastic Stability of Differential Equations, Springer, (2012)
    • 55. Rudnicki, R.: Long-time behavior of a stochastic prey-predator model. Stochastic Process. Appl 108, 93–107 (2003)
    • 56. Rudnicki, R., Pichór, K.: Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 206, 108–119 (2007)
    • 57. Turexun, N., When, B., Teng, Z.: The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence...
    • 58. Anderson, J.: William, pp. 92–119. Springer, New York, Continuous-Time Markov Chains (1991)
    • 59. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations 43(3), 525–546 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno