Ir al contenido

Documat


Using Compensatory Fuzzy Logic to Model an Investor’s Preference Regarding Portfolio Stock Selection within Markowitz’s Mean-Variance Framework

  • Autores: Luis Cisneros, Raúl Porras, Gilberto Rivera, Rafael Alejandro Espín Andrade, Vicente García
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 28, Nº. 3, 2024, págs. 1349-1359
  • Idioma: inglés
  • DOI: 10.13053/cys-28-3-5187
  • Enlaces
  • Resumen
    • Abstract: We analyze the use of Compensatory Fuzzy Logic (CFL) applied to an optimization model to reflect an investor’s preferences regarding portfolio stock selection. CFL is a framework that allows the construction of fuzzy predicates using fuzzy parametrized linguistic variables. Although the potential of a CFL predicate to model preferences is high, to the best of our knowledge, this is the first use of this strategy to do so. Real data from the Mexican Stock Exchange was employed to create a test instance. Portfolios were obtained using the Particle Swarm Optimization algorithm. By maximising the degree of truth of the predicate representing the investor’s preferences, the model is able to reflect investor profiles regarding the return-risk relation of the portfolios. Three artificial investor profiles were defined during the experimentation; the model was able to reflect all of these preferences.

  • Referencias bibliográficas
    • Abdolbaghi-Ataabadi, A.,Nazemi, A.,Saki, M.. (2023). Multi-objective possibility model for selecting the optimal stock portfolio. Advances...
    • Amiri, M.,Heidary, M. S.. (2019). Portfolio optimization with robust possibilistic programming. Iranian Journal of Finance. 3. 44-65
    • Corazza, M.,di-Tollo, G.,Fasano, G.,Pesenti, R.. (2021). A novel hybrid PSO-based metaheuristic for costly portfolio selection problems. Annals...
    • Dai, Y.,Qin, Z.. (2021). Multi-period uncertain portfolio optimization model with minimum transaction lots and dynamic risk preference. Applied...
    • Doering, J.,Kizys, R.,Juan, A. A.,Fito, A.,Polat, O.. (2019). Metaheuristics for rich portfolio optimisation and risk management: Current...
    • Espin-Andrade, R. A.,Cruz-Reyes, L.,Llorente-Peralta, C.,Gonzalez-Caballero, E.,Pedrycz, W.,Ruiz, S.. (2021). Archimedean compensatory fuzzy...
    • Espin-Andrade, R. A.,González-Caballero, E.,Pedrycz, W.,Fernández-González, E. R.. (2016). Archimedean-compensatory fuzzy logic systems. International...
    • Fazli, M.,Lashkari, M.,Taherkhani, H.,Habibi, J.. (2022). A novel experts advice aggregation framework using deep reinforcement learning for...
    • Hamdi, A.,Karimi, A.,Mehrdoust, F.,Belhaouari, S. B.. (2022). Portfolio selection problem using CVaR risk measures equipped with DEA, PSO,...
    • Harris, R. D.,Mazibas, M.. (2022). Portfolio optimization with behavioural preferences and investor memory. European Journal of Operational...
    • Kawano, Y.,Valdez, F.,Castillo, O.. (2022). Fuzzy combination of moth-flame optimization and lightning search algorithm with fuzzy dynamic...
    • Li, B.,Shu, Y.,Sun, Y.,Teo, K. L.. (2021). An optimistic value–variance–entropy model of uncertain portfolio optimization problem under different...
    • Mann, H. B.,Whitney, D. R.. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of...
    • Markowitz, H. M.. (1952). Portfolio selection. The journal of Finance. 7. 71-91
    • Nozarpour, Y.,Davoodi, S. M. R.,Fadaee, M.. (2023). Selecting the optimal multi-period stock portfolio with different time horizons in the...
    • Thakur, G. S. M.,Bhattacharyya, R.,Sarkar, S.. (2022). Fuzzy expert system for stock portfolio selection: An application to bombay stock exchange....
    • Zadeh, L. A.. (1965). Fuzzy sets. Information and Control. 8. 338
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno