Ir al contenido

Documat


MiniCovid-Unet: CT-Scan Lung Images Segmentation for COVID-19 Identification

  • Autores: Álvaro Salazar-Urbina, Elías Ventura-Molina, Cornelio Yáñez Márquez, Mario Aldape-Pérez, Itzamá López Yáñez
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 28, Nº. 1, 2024, págs. 75-84
  • Idioma: inglés
  • DOI: 10.13053/cys-28-1-4697
  • Enlaces
  • Resumen
    • Abstract: Detection and segmentation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV2 or COVID-19) is a difficult task due the different kinds of shapes, sizes and positions of the injury. Medical institutions have vast challenges because there is an urgent need for efficient tools to improve the diagnosis of COVID-19 patients. Computer tomography images (CT) are necessary for medical specialists to diagnose the patient’s condition. Nevertheless, there is a lack of both in Medical Centers, mainly in rural areas. The manual analysis of CT images is time-consuming; in addition, most images have low contrast, and it is possible to find blood vessels in the background, so the difficulty of a suitable diagnosis increases. Nowadays, deep learning methods are an alternative method to perform the detection and segmentation task. In this work, we propose a novel light model to detect and identify COVID-19 using CT images: MiniCovid-Unet. It is an improved version of U-net; main differences reside on the decoder and encoder architecture, MiniCovid-Unet needs fewer convolution layers and filters because it focuses only on COVID-19 images. Also, as a result of employing fewer parameters, it can be trained in less time, and the resulting model is light enough to be downloaded to a mobile device. In this way, it is possible to have a quick and confident diagnosis in remote areas, where there exists an absence of internet connection and medical specialists.

  • Referencias bibliográficas
    • Platto, S.,Wang, Y.,Zhou, J.,Carafoli, E.. (2021). History of the COVID-19 pandemic: Origin, explosion, worldwide spreading. Biochemical and...
    • (2020). WHO. Director-General’s opening remarks at the media briefing on COVID-19.
    • (2020). WHO. Coronavirus (COVID-19) Dashboard, 2020.
    • Li, S.,Li, S.,Disoma, C.,Zheng, R.,Zhou, M.,Razzaq, A.,Liu, P.,Zhou, Y.,Dong, Z.,Du, A.,Peng, J.,Hu, L.,Huang, J.,Feng, P.,Jiang, T.,Xia,...
    • Cheng, V. C. C.,Wong, S. C.,Chen, J. H. K.,Yip, C. C. Y.,Chuang, V. W. M.,Tsang, O. T. Y.,Sridhar, S.,Chan, J. F. W.,Ho, P. L.,Yuen, K. Y.....
    • Chen, M.,Tu, C.,Tan, C.,Zheng, X.,Wang, X.,Wu, J.,Huang, Y.,Wang, Z.,Yan, Y.,Li, Z.,Shan, H.,Liu, J.,Huang, J.. (2020). Key to successful...
    • Liu, Z.,Jin, C.,Wu, C. C.,Liang, T.,Zhao, H.,Wang, Y.,Wang, Z.,Li, F.,Zhou, J.,Cai, S.,Zeng, L.,Yang, J.. (2020). Association between Initial...
    • Zhou, X.,Pu, Y.,Zhang, D.,Xia, Y.,Guan, Y.,Liu, S.,Fan, L.. (2022). CT findings and dynamic imaging changes of COVID-19 in 2908 patients:...
    • Suri, J. S.,Agarwal, S.,Chabert, G. L.,Carriero, A.,Paschè, A.,Danna, P. S. C.,Saba, L.,Mehmedović, A.,Faa, G.,Singh, I. M.,Turk, M.,Chadha,...
    • Shi, H.,Han, X.,Jiang, N.,Cao, Y.,Alwalid, O.,Gu, J.,Fan, Y.,Zheng, C.. (2020). Radiological findings from 81 patients with COVID-19 pneumonia...
    • Ye, Z.,Zhang, Y.,Wang, Y.,Huang, Z.,Song, B.. (2020). Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review....
    • Al-Shehri, W.,Almalki, J.,Mehmood, R.,Alsaif, K.,Alshahrani, S. M.,Jannah, N.,Alangari, S.. (2022). A novel COVID-19 detection technique using...
    • LeCun, Y.,Bengio, Y.,Hinton, G.. (2015). Deep learning. Nature. 521. 436
    • Litjens, G.,Kooi, T.,Bejnordi, B. E.,Setio, A. A. A.,Ciompi, F.,Ghafoorian, M.,van der Laak, J. A.,van Ginneken, B.,Sánchez, C. I.. (2017)....
    • Gatys, L. A.,Ecker, A. S.,Bethge, M.. (2017). Texture and art with deep neural networks. Current Opinion in Neurobiology. 46. 178
    • Wang, S.,Yang, D. M.,Rong, R.,Zhan, X.,Fujimoto, J.,Liu, H.,Minna, J.,Wistuba, I. I.,Xie, Y.,Xiao, G.. (2019). Artificial intelligence in...
    • Shelhamer, E.,Long, J.,Darrell, T.. (2017). Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis...
    • Minaee, S.,Boykov, Y.,Porikli, F.,Plaza, A.,Kehtarnavaz, N.,Terzopoulos, D.. (2022). Image segmentation using deep learning: A survey. IEEE...
    • Ren, S.,He, K.,Girshick, R.,Sun, J.. (2017). Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions...
    • Luján-García, J.,Villuendas-Rey, Y.,López-Yáñez, I.,Camacho-Nieto, O.,Yáñez-Márquez, C.. (2021). Nanochest-net: A simple convolutional network...
    • Constantinou, M.,Exarchos, T.,Vrahatis, A. G.,Vlamos, P.. (2023). COVID-19 classification on chest X-ray images using deep learning methods....
    • Teixeira, L. O.,Pereira, R. M.,Bertolini, D.,Oliveira, L. S.,Nanni, L.,Cavalcanti, G. D. C.,Costa, Y. M. G.. (2021). Impact of lung segmentation...
    • Wang, L.,Lin, Z. Q.,Wong, A.. (2020). COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from...
    • Badrinarayanan, V.,Kendall, A.,Cipolla, R.. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE...
    • Jiang, Z. P.,Liu, Y. Y.,Shao, Z. E.,Huang, K. W.. (2021). An improved VGG16 model for pneumonia image classification. Applied Sciences. 11....
    • Gibson, E.,Giganti, F.,Hu, Y.,Bonmati, E.,Bandula, S.,Gurusamy, K.,Davidson, B.,Pereira, S. P.,Clarkson, M. J.,Barratt, D. C.. (2018). Automatic...
    • Wu, J.,Hu, W.,Wen, Y.,Tu, W.,Liu, X.. (2020). Skin lesion classification using densely connected convolutional networks with attention residual...
    • Liu, X.,Song, L.,Liu, S.,Zhang, Y.. (2021). A review of deep-learning-based medical image segmentation methods. Sustainability. 13. 1224
    • Sharma, R.,Saqib, M.,Lin, C. T.,Blumenstein, M.. (2022). A survey on object instance segmentation. SN Computer Science. 3. 499
    • (2020). COVID-19 CT Segmentation Dataset.
    • Hofmanninger, J.,Prayer, F.,Pan, J.,Röhrich, S.,Prosch, H.,Langs, G.. (2020). Automatic lung segmentation in routine imaging is primarily...
    • Xie, J.,Pang, Y.,Nie, J.,Cao, J.,Han, J.. (2022). Latent feature pyramid network for object detection. IEEE Transactions on Multimedia. 25....
    • Rostianingsih, S.,Setiawan, A.,Halim, C. I.. (2020). COCO (creating common object in context) dataset for chemistry apparatus. Procedia Computer...
    • Udupa, J. K.,LeBlanc, V. R.,Zhuge, Y.,Imielinska, C.,Schmidt, H.,Currie, L. M.,Hirsch, B. E.,Woodburn, J.. (2006). A framework for evaluating...
    • Moorthy, J.,Gandhi, U. D.. (2022). A Survey on medical image segmentation based on deep learning techniques. Big Data and Cognitive Computing....
    • Zhou, Z.,Siddiquee, M. M. R.,Tajbakhsh, N.,Liang, J.. (2020). UNet++: redesigning skip connections to exploit multiscale features...
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno