Ir al contenido

Documat


Development of a Customized Image Set for Object Detection in a Materials Synthesis Lab Using Convolutional Neural Networks

  • Autores: Alberto Esteban Reyes-Peralta, David Eduardo Pinto Avendaño Árbol académico, Francisco José López-Cortés, Rigoberto Cerino-Jiménez, Edgar Abidán Padilla-Luis, Darnes Vilariño Ayala Árbol académico
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 28, Nº. 4, 2024, págs. 2363-2368
  • Idioma: inglés
  • DOI: 10.13053/cys-28-4-5359
  • Enlaces
  • Resumen
    • Abstract: Convolutional Neural Networks (CNNs) have shown remarkable performance in object detection tasks, especially when trained on large and diverse datasets. However, in specialized domains such as materials synthesis laboratories, generic datasets may not capture the specific objects of interest or the unique challenges of the environment. This paper presents the development of a custom image dataset tailored for object detection in a materials synthesis laboratory. The dataset includes annotated images of equipment, chemicals, and other objects commonly found in such environments. We also describe the process of collecting and labeling the dataset, including the challenges faced and the strategies used to address them. To demonstrate the utility of the dataset, we trained a CNN model using the popular YOLO (You Only Look Once) architecture and evaluated its performance on a test set. The results show that our custom dataset enables the CNN model to accurately detect objects in materials synthesis laboratories, highlighting the importance of domain-specific datasets for enhancing the performance of object detection systems in specialized environments.

  • Referencias bibliográficas
    • Buslaev, A.,Iglovikov, V. I.,Khvedchenya, E.,Parinov, A.,Druzhinin, M.,Kalinin, A. A.. (2020). Albumentations: Fast and flexible image augmentations....
    • Ciaglia, F.,Zuppichini, F. S.,Guerrie, P.,McQuade, M.,Solawetz, J.. (2022). Roboflow 100: A rich, multi-domain object detection benchmark.
    • Deng, J.,Dong, W.,Socher, R.,Li, L. J.,Li, K.,Li, F. F.. (2009). ImageNet: A large-scale hierarchical image database. 248
    • Ding, Z.. (2023). Chemistry laboratory apparatus dataset.
    • Eppel, S.,Xu, H.,Bismuth, M.,Aspuru-Guzik, A.. (2020). Vector-LabPics dataset for images of materials in vessels in the chemistry lab.
    • Eppel, S.,Xu, H.,Bismuth, M.,Guzik-Aspuru, A.. (2021). LabPics dataset for computer vision for autonomous chemistry labs and medical labs....
    • Khosla, C.,Saini, B. S.. (2020). Enhancing performance of deep learning models with different data augmentation techniques: A survey. International...
    • Lin, T. Y.,Maire, M.,Belongie, S.,Hays, J.,Perona, P.,Ramanan, D.,Dollar, P.,Zitnick, C. L.. (2014). Microsoft COCO: Common objects in context....
    • Shao, S.,Li, Z.,Zhang, T.,Peng, C.,Yu, G.,Zhang, X.,Li, J.,Sun, J.. (2019). Objects365: A large-scale, high-quality dataset for object detection....
    • Shelhamer, E.,Long, J.,Darrell, T.. (2017). Fully convolutional networks for semantic segmentation. 39. 640
    • Szeliski, R.. (2022). Computer vision: Algorithms and applications. Springer International Publishing.
    • Terven, J.,Córdova-Esparza, D. M.,Romero-González, J. A.. (2023). A comprehensive review of YOLO architectures in computer vision: From YOLOv1...
    • Tkachenko, M.,Malyuk, M.,Holmanyuk, A.,Liubimov, N.. (2020). Label Studio: Data labeling software.
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno