Ir al contenido

Documat


Automatic Recognition of Leukemia AML Using Evolutionary Vision

  • Autores: Rocío Ochoa-Montiel, Humberto Sossa, Gustavo Olague Árbol académico, Carlos Sánchez López
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 27, Nº. 1, 2023, págs. 247-256
  • Idioma: inglés
  • DOI: 10.13053/cys-27-1-4536
  • Enlaces
  • Resumen
    • Abstract: In this work, an evolutionary vision approach is used for the automatic recognition of AML leukemia images. Unlike common approaches using convolutional neural networks, in the presented model the feature extraction process is transparent. Moreover, the structure of the obtained solutions is amenable to interpretation by a human user, which is a significant advantage over automatic recognition approaches based on deep neural networks. Experimental results show that the evolutionary vision approach can obtain satisfactory results on the AML leukemia recognition problem.

  • Referencias bibliográficas
    • Dasariraju, S.,Huo, M.,Mccalla, S.. (2020). Detection and classification of immature leukocytes for diagnosis of acute myeloid leukemia using...
    • Ghane, N.,Vard, A.,Talebi, A.,Nematollahi, P.. (2019). Classification of chronic myeloid leukemia cell subtypes based on microscopic image...
    • Grubbs, F. E.. (1950). Sample criteria for testing outlying observations. The Annals of Mathematical Statistics. 21. 27-58
    • Huang, F.,Guang, P.,Li, F.,Liu, X.,Zhang, W.,Huang, W.. (2020). AML, ALL, and CML classification and diagnosis based on bone marrow cell morphology...
    • Jothi, G.,Hannah, I.,Ahmad, T. A.,K Renuga, D.. (2018). Rough set theory with jaya optimization for acute lymphoblastic leukemia classification....
    • Laosai, J.,Chamnongthai, K.. (2018). Classification of acute leukemia using medical-knowledge-based morphology and cd marker. Biomedical Signal...
    • Ochoa-Montiel, R.,Sossa, H.,Olague, G.,Chan-Ley, M.,Menéndez-Clavijo, J.. (2021). Symbolic learning using brain programming for the recognition...
    • Ochoa-Montiel, R.,Sossa, H.,Olague, G.,Sánchez-López, C.. (2022). Machine learning and symbolic learning for the recognition of leukemia L1,...
    • Ochoa-Montiel, R.,Sossa-Azuela, H.,Olague, G.. (2021). Dataset_leukemia.
    • Olague, G.,Clemente, E.,Dozal, L.,Hernández, D.. (2014). Evolving an artificial visual cortex for object recognition with brain programming....
    • Pansombut, T.,Wikaisuksakul, S.,Khongkraphan, K.,Phonon, A.. (2019). Convolutional neural networks for recognition of lymphoblast cell images....
    • Ruiz-Argüelles, G. J.,Ruiz-Delgado, G. J.. (2014). Fundamentos de Hematología.
    • Sahlol, A. T.,Abdeldaim, A. M.,Hassanien, A. E.. (2018). Automatic acute lymphoblastic leukemia classification model using social spider optimization...
    • Sahlol, A. T.,Kollmannsberger, P.,Ewees, A. A.. (2020). Efficient classification of white blood cell leukemia with improved swarm optimization...
    • Schouten, J. P. E.,Matek, C.,Jacobs, L. F. P.,Buck, M. C.,Bošnački, D.,Marr, C.. (2021). Tens of images can suffice to train neural networks...
    • Vogado, L.,Veras, R.,Aires, K.,Araujo, F.,Silva, R.,Ponti, M.,Tavares, J. M. R. S.. (2021). Diagnosis of leukaemia in blood slides based on...
    • (2021). World Healt Organization. Cancer.
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno