Ir al contenido

Documat


Carbon/Nitrogen Ratio Estimation for Urban Organic Waste Using Convolutional Neural Networks

  • Autores: Andrea de Anda-Trasviña, Alejandra Nieto Garibay, Fernando D. Von Borstel, Enrique Troyo Diéguez, José Luis García Hernández Árbol académico, Joaquín Gutiérrez
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 27, Nº. 3, 2023, págs. 733-747
  • Idioma: inglés
  • DOI: 10.13053/cys-27-3-4301
  • Enlaces
  • Resumen
    • Abstract: In this paper, the Carbon/Nitrogen ratio was estimated by classifying the urban organic waste (UOW) based on qualitative (color and maturity) and quantitative (weight) characteristics via convolutional neural networks (CNN) and image processing. The reuse of UOW is a suitable process in waste management, preventing its disposition in landfills and reducing the effects on the environment and human health. Ambient conditions affect the UOW characteristics over time. Knowing these changes is essential to reuse them appropriately, mainly both carbon and nitrogen content. A categorization associated with the decomposition stage of the UOW was proposed, which becomes the corresponding UOW classes. Three convolutional neural network models were trained with UOW images. Two pre-trained CNN (MobileNet and VGG16) were trained by transfer learning technique, and one proposed model (UOWNet) was trained from scratch. The UOWNet model presented a good agreement for the classification task. The results show that this preprocess is a practical tool for assessing the Carbon/Nitrogen ratio of UOW from its qualitative and quantitative features through image analysis. It is a preliminary framework aimed to support household organic waste recycling and community sustainability.

  • Referencias bibliográficas
    • (2020). FAO Frutas y verduras – esenciales en tu dieta. Año Internacional de las Frutas y Verduras, 2021. Documento de antecedentes.
    • Colón, J.,Martínez-Blanco, J.,Gabarrell, X.,Artola, A.,Sánchez, A.,Rieradevall, J.,Font, X.. (2010). Environmental assessment of home composting....
    • Kaza, S.,Yao, L.,Bhada-Tata, P.,Van Woerden, F.. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank...
    • Román, P.,Martínez, M. M.,Pantoja, A.. (2013). Manual de compostaje del agricultor. Experiencias en América Latina. Organización de las Naciones...
    • Sayara, T.,Basheer-Salimia, R.,Hawamde, F.,Sánchez, A.. (2020). Recycling of organic wastes through composting: process performance and compost...
    • Bueno-Márquez, P.,Díaz-Blanco, M. J.,Cabrera-Capitan, F.. (2008). Compostaje. Mundi-Prensa. Madrid, España.
    • Ghinea, C.,Leahu, A.. (2020). Monitoring of fruit and vegetable waste composting process: Relationship between microorganisms and physico-chemical...
    • Kumar, M.,Ou, Y. L.,Lin, J. G.. (2010). Co-composting of green waste and food waste at low C/N ratio. Waste Management. 30. 602
    • (2021). Centro de Investigaciones Biológicas del Noreste S.C. La composta. Importancia, Elaboración y uso agrícola. 1. Trillas. México, D.F.....
    • Sánchez-Monedero, M. A.,Roig, A.,Paredes, C.,Bernal, M. P.. (2001). Nitrogen transformation during organic waste composting by the Rutgers...
    • Zhang, W. M.,Yu, C. X.,Wang, X. J.,Hai, L.. (2020). Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the...
    • Li, Z.,Lu, H.,Ren, L.,He, L.. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere. 93. 1247
    • González, R. C.,Woods, R. E.. (2018). Digital image processing. Pearson.
    • García-Villanueva, M.,Romero-Muñoz, L.. (2020). Diseño de una arquitectura de red neuronal convolucional para la clasificación de objetos....
    • Liu, L.,Ouyang, W.,Wang, X.,Fieguth, P.,Chen, J.,Liu, X.,Pietikäinen, M.. (2020). Deep learning for generic object detection: A survey. International...
    • Lecun, Y.,Bengio, Y.,Hinton, G.. (2015). Deep learning. Nature. 521. 436
    • Aggarwal, C. C.. (2018). Neural networks and deep learning. Springer International Publishing.
    • Ciocca, G.,Micali, G.,Napoletano, P.. (2020). State recognition of food images using deep features. IEEE Access. 8. 32003
    • Chen, J.,Ngo, C. W.. (2016). Deep-based ingredient recognition for cooking recipe retrieval. 24th ACM international conference on Multimedia,...
    • Silva, D.,Manzo-Martínez, A.,Gaxiola, F.,González-Gurrola, L.,Ramírez-Alonso, G.. (2022). Analysis of CNN architectures for human action recognition...
    • Jelodar, A. B.,Salekin, M. S.,Sun, Y.. (2018). Identifying object states in cooking-related images.
    • Salekin, M. S.,Babaeian-Jelodar, A.,Kushol, R.. (2019). Cooking state recognition from images using inception architecture. International...
    • Wang, S. H.,Chen, Y.. (2018). Fruit category classification via an eight-layer convolutional neural network with parametric rectified linear...
    • Sakib, S.,Ashrafi, Z.,Siddique, A. B.. (2019). Implementation of fruits recognition classifier using convolutional neural network algorithm...
    • Torres, J.. (2019). Deep learning: Introducción práctica con Keras. WHAT THIS SPACE. 176
    • Hridayami, P.,Darma-Putra, I. K. G.,Suard-Wibawa, K. S.. (2019). Fish species recognition using VGG16 deep convolutional neural network. Korean...
    • Hussain, I.,He, Q.,Chen, Z.. (2018). Automatic fruit recognition based on DCNN for commercial source trace system. International Journal on...
    • Zhang, Y. D.,Dong, Z.,Chen, X.,Jia, W.,Du, S.,Muhammad, K.,Wang, S. H.. (2019). Image based fruit category classification by 13-layer deep...
    • Chu, Y.,Huang, C.,Xie, X.,Tan, B.,Kamal, S.,Xiong, X.. (2018). Multilayer hybrid deep-learning method for waste classification and recycling....
    • Desai, Y.,Dalvi, A.,Jadhav, P.,Baphna, A.. (2018). Waste segregation using machine learning. International Journal for Research in Applied...
    • Frost, S.,Tor, B.,Agrawal, R.,Forbes, A. G.. (2019). CompostNet: An image classifier for meal waste. Global Humanitarian Technology Conference.
    • Martínez-Blanco, J.,Colón, J.,Gabarrell, X.,Font, X.,Sánchez, A.,Artola, A.,Rieradevall, J.. (2010). The use of life cycle assessment for...
    • Kucbel, M.,Raclavská, H.,Růžičková, J.,Švédová, B.,Sassmanová, V.,Drozdová, J.,Raclavský, K.,Juchelková, D.. (2019). Properties of composts...
    • (2020). SIAP. Panorama Agroalimentario 2020. 200
    • Ghinea, C.,Apostol, L. C.,Prisacaru, A. E,Leahu, A.. (2019). Development of a model for food waste composting. Environmental Science and Pollution...
    • Sagar, N. A.,Pareek, S.,Sharma, S.,Yahia, E. M,Lobo, M. G.. (2018). Fruit and vegetable waste: bioactive compounds, their extraction, and...
    • De-Laurentiis, V.,Corrado, S.,Sala, S.. (2018). Quantifying household waste of fresh fruit and vegetables in the EU. Waste Management. 77....
    • (2020). Python. Python software foundation.
    • Bradski, G.. (2000). The openCV library. Dr. Dobb’s Journal of Software Tools.
    • Loesecke, V.,Harry, W.. (1950). Bananas : Chemistry, physiology, technology. Interscience Publishers, Inc.
    • Barrett, D. M.,Beaulieu, J. C.,Shewfelt, R.. (2010). Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable...
    • Soltani, M.,Alimardani, R.,Omid, M.. (2011). Changes in physico-mechanical properties of banana fruit during ripening treatment. The Journal...
    • Sánchez-Meca, J.. (2010). Cómo hacer una revisión sistemática y un meta-análisis. Aula Abierta. 38. 53-64
    • (2020). R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna.
    • Raschka, S.,Mirjalili, V.. (2019). Python machine learning. Packt. Birmingham.
    • (2021). Colab. Google Colaboratory.
    • Fernández, M. E.,Nunell, G. V.,Bonelli, P. R,Cukierman, A. L.. (2014). Activated carbon developed from orange peels: Batch and dynamic competitive...
    • Idris, I.,Dan-musa, A.,Musa, A.,Ilu, B. M.,Sada, I.. (2019). Evaluation of the Influence of size reduction on methane oroduction of orange...
    • Pathak, P. D.,Mandavgane, S. A.,Kulkarni, B. D.. (2017). Fruit peel waste: Characterization and its potential uses. Current Science Association....
    • Pinzón-Bedoya, M. L,Cardona, A. M.. (2008). Caracterización de la cáscara de naranja para su uso como material bioadsorbente. Revista de la...
    • Tejeda-Benítez, L.,Tejada-Tovar, C.,Marimón-Bolívar, W.,Villabona-Oriz, Á.. (2014). Estudio de modificación química y física de biomasa (Citrus...
    • Tejada-Tovar, C.,González-Delgado, A.,Villabona-Ortiz, A.. (2018). Adsorption kinetics of orange peel biosorbents for Cr (VI) uptake from...
    • Tejada-Tovar, C.,Herrera-Barros, A.,Villabona-Ortiz, A.. (2019). Assessment of chemically modified lignocellulose waste for the adsorption...
    • Zoffreo, A. N.. (2019). Two stage anaerobic digestion of orange peels. Worcester Polytech Institute Digit WPI.
    • Thomas, E. Y.,Adiku, S. G.,Atkinson, C. J.,Omueti, J. A.,Marcarthy, D. S.. (2019). Evaluation of CO2 emission from rice husk biochar and cowdung...
    • Omar, S. Z.,Hasan, A. H.,Lalov, I.. (2020). Potato peels and mixed grasses as raw materials for biofuel production. Aro-The Scientific Journal...
    • Liang, S.,McDonald, A. G.. (2014). Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources...
    • Gautam, K.,Pareek, A.,Sharma, D. K.. (2015). A method to utilize waste nutrient sources in aqueous extracts for enhancement of biomass and...
    • Rynk, R.,Van de Kamp, M.,Willson, G. B.,Singley, M. E.,Richard, T. L.,Kolega, J. J.,Gouin, F. R.,Laliberty, L. J.,Kay, D.,Murphy, D. W.,Hoitink,...
    • Sial, T. A.,Khan, M. N.,Lan, Z.,Kumbhar, F.,Ying, Z.,Zhang, J.,Sun, D.,Li, X.. (2019). Contrasting effects of banana peels waste and its biochar...
    • Rojas, A. F.,Rodríguez-Barona, S.,Montoya, J.. (2019). Evaluación de alternativas de aprovechamiento energético y bioactivo de la cáscara...
    • Rojas-González, A. F.,Flórez-Montes, C.,López-Rodríguez, D. F.. (2018). Use prospects of some agroindustrial waste. Revista Cubana de Química....
    • Filter, J.. (2018). Split-folders 0.4.3.
    • Howard, A. G.,Zhu, M.,Chen, B.,Kalenichenko, D.,Wang, W.,Weyand, T.,Andreetto, M.,Adam, H.. (2017). MobileNets: Efficient convolutional neural...
    • Simonyan, K.,Zisserman, A.. (2014). Very deep convolutional networks for large-scale image recognition. 1-14
    • Seijas, C.,Montilla, G.,Frassato, L.. (2019). Identification of rodent species using deep learning. Computación y Sistemas. 23. 257
    • Zheng, Q.. (2021). Classifying states of cooking objects using convolutional neural network.
    • Cohen, J.. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 20. 37-46
    • Landis, J. R.,Koch, G. G.. (1977). The measurement of observer agreement for categorical data. Biometrics. 33. 159
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno