Ir al contenido

Documat


Automatic Detection of Vehicular Traffic Elements based on Deep Learning for Advanced Driving Assistance Systems

  • Autores: Laura Cleofas Sánchez, Juan Pablo Francisco Posadas-Durán, Pedro A. Martínez Ortiz, Gilberto Loyo-Desiderio, Eduardo Alberto Ruvalcaba-Hernández, Omar González Brito
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 27, Nº. 3, 2023, págs. 643-651
  • Idioma: inglés
  • DOI: 10.13053/cys-27-3-4508
  • Enlaces
  • Resumen
    • Abstract: This paper presents a prototype of an automobile driver assistance system based on YOLOv3. The system detects car types, traffic signs, and traffic lights in real-time and warns the driver accordingly. In the learning phase of the YOLO algorithm, the standard weights are learned first, followed by transfer learning to the objects of interest. The retraining phase uses 2,800 images obtained from the Internet of three countries of the real-life, and the testing phase uses real-time videos of Mexico City roads. In the validation phase, the proposed system achieves 95%, 37%, and 40% performance on the compiled dataset for the detection of road elements. The results obtained are comparable and in some cases better than those reported in previous works. Using a Raspberry Pi 4, the prototype was tested in real-life, generating visual and audible warnings for the driver, with an object recognition rate of 0.4 fps. A mean average precision (mAP) of 53% was reached by the proposed system. The experiments showed that the prototype achieved a poor recognition rate and required high computational processing for object recognition. However, YOLO is a model that can have good performance on low-resource hardware.

  • Referencias bibliográficas
    • Ayachi, R.,Afif, M.,Said, Y.,Atri, M.. (2019). Traffic signs detection for real-world application of an advanced driving assisting system...
    • Bogdoll, D.,Orf, S.,Töttel, L.,Zöllner, J. M.. (2022). Taxonomy and survey on remote human input systems for driving automation systems. Springer...
    • Ha, P.,Chen, S.,Du, R.,Dong, J.,Li, Y.,Labi, S.. (2020). Vehicle connectivity and automation: A sibling relationship. Frontiers in Built Environment....
    • Jia, Y.,Shelhamer, E.,Donahue, J.,Karayev, S.,Long, J.,Girshick, R.,Guadarrama, S.,Darrell, T.. (2014). Caffe: Convolutional architecture...
    • Kumar Kukkala, V.,Tunnell, J.,Pasricha, S.,Bradley, T.. (2018). Advanced driver-assistance systems: A path toward autonomous vehicles. IEEE...
    • Lin, H. Y.,Dai, J. M.,Wu, L. T.,Chen, L. Q.. (2020). A vision-based driver assistance system with forward collision and overtaking detection....
    • Maksymova, I.,Greiner, P.,Steger, C.,Niedermueller, L. C.,Druml, N.. (2020). Adaptive MEMS mirror control for reliable automotive driving...
    • Mostafa, M.,Ghantous, M.. (2022). A YOLO based approach for traffic light recognition for ADAS systems. 2nd International Mobile, Intelligent,...
    • Neelam Jaikishore, C.,Podaturpet Arunkumar, G.,Jagannathan Srinath, A.,Vamsi, H.,Srinivasan, K.,Karthik Ramesh, R.,Jayaraman, K.,Ramachandran,...
    • (2019). Pan American Health Organization Status of road safety in the region of the Americas. Pan American Health Org.
    • Raviteja, S.,Shanmughasundaram, R.. (2018). Advanced driver assitance system (ADAS). Second International Conference on Intelligent Computing...
    • Redmon, J.. (2016). Darknet: Open source neural networks in c.
    • Ross, H. L.. (2021). Safety for future transport and mobility. Springer.
    • Sligar, A. P.. (2020). Machine learning-based radar perception for autonomous vehicles using full physics simulation. IEEE Access. 8. 51470
    • Sun, S.,Petropulu, A. P.,Poor, H. V.. (2020). MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges....
    • Wan, J.,Ding, W.,Zhu, H.,Xia, M.,Huang, Z.,Tian, L.,Zhu, Y.,Wang, H.. (2020). An efficient small traffic sign detection method based on YOLOv3....
    • Wang, T.. (2017). Phd forum: Real-time lane-vehicle detection for advanced driver assistance on mobile devices. IEEE International Conference...
    • Wijaya, K. T.,Bharoto, L. Y.,Purwanto, A.,Syamsuddin, E. Y.. (2020). Vision-based parking assist system with bird-eye surround vision for...
    • Zhang, J.,Huang, M.,Jin, X.,Li, X.. (2017). A real-time chinese traffic sign detection algorithm based on modified YOLOv2. Algorithms. 10....
    • Ziebinski, A.,Cupek, R.,Grzechca, D.,Chruszczyk, L.. (2017). Review of advanced driver assistance systems (ADAS). 1906. AIP Conference Proceedings.
    • Zornoza Somolinos, A.. (2021). Vehículos automatizados y seguro obligatorio de automóviles: Estudio de derecho comparado. 1-273
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno