Ir al contenido

Documat


Un modelo macroeconómico con agentes de vida finita y estocástica: cobertura de riesgo de mercado con derivados americanos

  • Ma. Teresa V. Martínez-Palacios [1] ; Francisco Venegas-Martínez [2]
    1. [1] Universidad Autónoma del Estado de Hidalgo

      Universidad Autónoma del Estado de Hidalgo

      México

    2. [2] Instituto Politécnico Nacional

      Instituto Politécnico Nacional

      México

  • Localización: Economía: teoría y práctica, ISSN 0188-3380, ISSN-e 2448-7481, Nº. 41, 2014, págs. 71-106
  • Idioma: español
  • Enlaces
  • Resumen
    • español

      En esta investigación se desarrolló un modelo de economía estocástica, pequeña y abierta, poblada por consumidores racionales idénticos que tienen vida finita, pero estocástica; además, son adversos al riesgo y disponen de una riqueza inicial. Estos agentes enfrentan la decisión de distribuir su riqueza entre consumo e inversión en un portafolio de activos en un ambiente de riesgo de mercado y de política fiscal incierta. La cobertura se lleva a cabo mediante una opción americana de venta y su valuación se realiza en términos de cuánto está dispuesto a pagar el consumidor representativo por mantener dicho contrato a fin de cubrir un activo riesgoso contra caídas en su precio. El precio del contrato se determina en términos del premio al riesgo, el cual se caracteriza mediante la solución de una ecuación diferencial parcial lineal de segundo orden. Por último, se obtiene una formula de aproximación para el precio de la opción americana y se realiza un análisis de sensibilidad de dicho precio con respecto de sus parámetros.

    • English

      This paper develops a stochastic model of a small and open economy populated by identical rational consumers having finite life but stochastic, who are risk averse and have an initial wealth. These agents face the decision to allocate his wealth between consumption and investment in a portfolio of assets under an environment of risk market and uncertain fiscal policy. Hedging is performed via an American put option and its pricing is carried out in terms of how much the representative consumer is willing to pay to keep that contract to hedge a fall in the risky asset price. The option price is determined in terms of the risk premium, which is characterized by the solution of a second-order, linear partial differential equation. Finally, an approximated formula for the American option price is obtained, and a sensitive analysis of such a price with respect to its parameters is carried out.

  • Referencias bibliográficas
    • Ángeles, Gerardo,Venegas-Martínez, Francisco. (2010). Valuación de opciones sobre índices bursátiles y determinación de la estructura de plazos...
    • Barone-Adesi, Giovanni,Whaley, Robert. (1987). Efficient Analytic Approximation of American Option Values. Journal of Finance. 42. 301-320
    • Black, Fischer,Scholes, Myron. (1973). The Pricing of Option and Corporate Liabilities. Journal of Political Economy. 81. 637-654
    • Bjork, Tomas. (2004). Arbitrage Theory in Continuous Time. 2. Oxford University Press.
    • Bjork, Tomas,Myhrman, Johan,Persson, Mats. (1987). Optimal consumption with stochastic prices in continuous time. Journal of Applied Probability....
    • Brennan, Michael J.,Schwartz, Eduardo S.. (1977). The Valuation of American Put Options. The Journal of Finance. 32. 449-462
    • Broadie, Mark,Glasserman, Paul,Ha, Zachary. (2000). Probabilistic Constrained Optimization: Methodology and Applications: Chapter. Kluwer....
    • Broadie, Mark,Detemple, Jerome. (1996). American option valuation: New bounds, approximations, and a comparison of existing methods. Review...
    • Broadie, Mark. (2004). Option Pricing: Valuation Models and Applications. Management Science. 50. 1145-1177
    • Clément, Emanuelle,Lamberton, Damien,Protter, Philip. (2002). An Analysis of a Least Squares Regression Method for American Option Pricing....
    • Clower, Robert. (1967). A reconsideration of the microfoundations of monetary theory. Economic Inquiry. 6. 1-8
    • Cox, John C.,Ingersoll Jr., Jonathan E.,Ross, Stephen A.. (1985). An Intertemporal General Equilibrium Model of Asset Prices. Econometrica....
    • Cox, John C.. (1985). A Theory of the Term Structure of Interest Rates. Econometrica. 53. 363-384
    • Cox, John C.,Ross, Stephen A.,Rubinstein, Mark. (1979). Option pricing: A simplified approach. Journal of Financial Economics. 7. 229-263
    • Cox, John C.,Ross, Stephen A.. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics. 3. 145-166
    • Detemple, Jerome,Tian, Weidong. (2002). The Valuation of American Options for a Class of Diffusion Processes. Management Science. 48. 917-937
    • Detemple, Jerome,Feng, Shui,Tian, Wieidong. (2003). The Valuation of American Call Options on the Minimum of Two Dividend-Paying Assets. The...
    • Duan, Jin-Chuan,Simonato, Jean-Guy. (2001). American Option Pricing under GARCH by a Markov Chain Approximation. Journal of Economic Dynamics...
    • Fu, Michael C.,Laprise, Scott B.,Madan, Dilip. B.,Su, Yi,Wu, Rongwen. (2001). Pricing American Options: A Comparison of Monte Carlo Simulation...
    • Geske, Robert,Johnson, Herb. (1984). The American put option valued analytically. The Journal of Finance. 39. 1511-1524
    • Geske, Robert,Shastri, Kuldeep. (1985). Valuation by Approximation: A Comparison of Alternative Option Valuation Techniques. The Journal of...
    • Grinols, Earl L.,Turnovsky, Stephen J.. (1993). Risk, the Financial Market and Macroeconomic Equilibrium. Journal of Economic Dynamics and...
    • Hakansson, Nils. (1970). Optimal Investment and Consumption Strategies under Risk for a Class of Utility Functions. Econometrica. 38. 587-607
    • Hernández-Lerma, Onésimo. (1994). Lectures on Continuous-Time Markov Control Processes. Sociedad Matemática Mexicana. México.
    • Heston, Steven L.. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Review...
    • Ho, Thomas S. Y.,Lee, Sang-Bin. (1986). Term Structure Movements and Pricing Interest Rate Contingent Claims. The Journal of Finance. 41....
    • Huang, Jing-zhi,Subrahmanyam, Marti G.,Yu, George. (1996). Pricing and hedging American options: a recursive integration method. The Review...
    • Hull, John,White, Alan. (1987). The Pricing of Options on Assets with Stochastic Volatilities. The Journal of Finance. 42. 281-300
    • Hull, John. (1993). One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities. The Journal of Financial and...
    • Huyen, Pham. (1997). Optimal stopping, free boundary, and American option in a jump-diffusion model. Mathematics and Statistics: Applied Mathematics...
    • Ikonen, Samuli,Toivanen, Jari. (2008). Efficient Numerical Methods for Pricing American Options under Stochastic Volatility. Numerical Methods...
    • Ju, Nengjiu. (1998). Pricing by American option by approximating its early exercise boundary as a multipiece exponential function. The Review...
    • Karatzas, Ioannis,Shreve, Steven. (1988). Graduate Text in Mathematics, 113: Brownian Motion and Stochastic Calculus. 2. Springer. New York....
    • Kohn, Robert. (2003). Partial Differential Equations for Finance.
    • Kohn, Robert. (2011). PDE for Finance Notes, Spring 2011-Section 6.
    • Kou, Steven G.,Wang, Hui. (2004). Option Pricing Under a Double Exponential Jump Diffusion Model. Management Science. 50. 1178-1192
    • Longstaff, Francis A.,Schwartz, Eduardo S.. (2001). Valuing American options by simulation: a simple least-squares approach. The Review of...
    • Merton, Robert C.. (1971). Optimum Consumption and Portfolio Rules in a Continuous-Time Model. Journal of Economic Theory. 3. 373-413
    • Merton, Robert C.. (1973). Theory of Rational Option Pricing. Bell Journal of Economics. 4. 141-183
    • Merton, Robert C.. (1990). Continuous-Time Finance. Basil Blackwell. Cambridge^eMA MA.
    • Merton, Robert C.. (1992). Continuous-Time Finance. Review of Economics and Statistics. 51. 247-257
    • Sethi, Suresh P.. (1997). Optimal Consumption and Investment with Bankruptcy. Kluwer Academic Publishers.
    • Shreve, Steven. (1997). Stochastic Calculus and Finance.
    • Sierra, Guillermo. (2007). Procesos Hurst y movimientos brownianos fraccionales en mercados fractales. Revista de Administración Finanzas...
    • Ramsey, F.. (1928). A Mathematical Theory of Saving. Economic Journal. 38. 543-559
    • Rogers, Leonard C. G.. (2002). Monte Carlo Valuation of American Options. Mathematical Finance. 12. 271-286
    • Stentoft, Lars. (2005). Pricing American Options when the Underlying Asset follows garch processes. Journal of Empirical Finance. 12. 576-611
    • Taylor, Howard M.. (1967). Evaluating a call option and optimal timing strategy in the stock market. Management Science. 14. 111-120
    • Turnovsky, S. J.. (1993). Macroeconomic Policies, Growth, and Welfare in a Stochastic Economy. International Economic Review. 34. 953-981
    • Turnovsky, Stephen J.,Smith, William T.. (2006). Equilibrium consumption and precautionary savings in a stochastically growing economy. Journal...
    • Venegas-Martínez, Francisco. (2001). Opciones cobertura y procesos de difusión con saltos: una aplicación a los títulos de GCARSO. Estudios...
    • Venegas-Martínez, Francisco. (2004). Reforma fiscal incierta y sus efectos en las decisiones de consumo y portafolio: impacto en el bienestar...
    • Venegas-Martínez, Francisco. (2005). Política fiscal, estabilización de precios y mercados incompletos. Estudios Económicos. 20. 3-25
    • Venegas-Martínez, Francisco. (2006). Stochastic Temporary Stabilization: Undiversifiable Devaluation and Income Risks. Economic Modelling....
    • Venegas-Martínez, Francisco. (2007). Real Options on Consumption in a Small Open Monetary Economy: A Stochastic Optimal Control Approach....
    • Venegas-Martínez, Francisco. (2008). Riesgos financieros y económicos, productos derivados y decisiones económicas bajo incertidumbre. 2....
    • Venegas-Martínez, Francisco. (2009). Un modelo estocástico de equilibrio general para valuar derivados y bonos. Econo Quantum. 6. 111-120
    • Venegas-Martínez, Francisco,Ortiz-Arango, Francisco,Castillo-Ramírez, Claudia E.. (2010). Impacto de la política fiscal en un ambiente con...
    • Venegas-Martínez, Francisco,Cruz-Ake, Salvador. (2010). Productos derivados sobre bienes de consumo. Econo Quantum. 6. 25-54
    • Villeneuve, Stephane. (2007). On Threshold Strategies and the Smooth-Fit Principle for Optimal Stopping Problems. Journal of Applied Probability....
    • Villeneuve, Stephane,Zanette, Antonino. (2002). Parabolic ADI Methods for Pricing American Options on Two Stocks. Mathematics and Statistics:...
    • Whaley, Robert E.. (1981). On the Valuation of American Call Options on Stocks with Known Dividends. Journal of Financial Economics. 9. 207-211
    • Whaley, Robert E.. (1986). Valuation of American Futures Options: Theory and Empirical Tests. The Journal of Finance. 41. 127-150
    • Wilmott, Paul,Howison, Sam,Dewynne, Jeff. (1999). The Mathematics of Financial Derivatives. A Student Introduction. Cambridge University Press....
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno