Ir al contenido

Documat


Synergic integration of the mirnome, machine learning and bioinformatics for the identification of potential disease-modifying agents in obstructive sleep apnea

  • Thalia Belmonte [4] ; Iván D. Benitez [4] ; María C. García-Hidalgo [4] ; Marta Molinero [4] ; Lucía Pinilla [5] ; Olga Mínguez [4] ; Rafaela Vaca [4] ; Maria Aguilà [4] ; Anna Moncusí-Moix [4] ; Gerard Torres [5] ; Olga Mediano [6] Árbol académico ; Juan F. Masa [7] ; Maria J. Masdeu [1] ; Blanca Montero-San-Martín [2] ; Mercè Ibarz [2] ; Pablo Martinez-Camblor [8] Árbol académico ; Alberto Gómez-Carballa [3] ; Antonio Salas [3] Árbol académico ; Federico Martinón-Torres [3] ; Ferran Barbé [4] ; Manuel Sánchez-de-la-Torre [5] ; David de Gonzalo-Calvo [4]
    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

    2. [2] Hospital Universitario Arnau de Vilanova

      Hospital Universitario Arnau de Vilanova

      Lérida, España

    3. [3] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

    4. [4] Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
    5. [5] Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
    6. [6] Pneumology Department, University Hospital of Guadalajara, Guadalajara, Spain
    7. [7] San Pedro de Alcantara Hospital, Instituto Universitario de Investigación Biosanitaria de Extremadura, Cáceres, Spain
    8. [8] Anesthesiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
  • Localización: Archivos de bronconeumología: Organo oficial de la Sociedad Española de Neumología y Cirugía Torácica SEPAR y la Asociación Latinoamericana de Tórax ( ALAT ), ISSN 0300-2896, Vol. 61, Nº. 6 (June), 2025, págs. 348-358
  • Idioma: inglés
  • DOI: 10.1016/j.arbres.2024.11.011
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Introduction Understanding the diverse pathogenetic pathways in obstructive sleep apnea (OSA) is crucial for improving outcomes. microRNA (miRNA) profiling is a promising strategy for elucidating these mechanisms.

      Objective To characterize the pathogenetic pathways linked to OSA through the integration of miRNA profiles, machine learning (ML) and bioinformatics.

      Methods This multicenter study involved 525 patients with suspected OSA who underwent polysomnography. Plasma miRNAs were quantified via RNA sequencing in the discovery phase, with validation in two subsequent phases using RT-qPCR. Supervised ML feature selection methods and comprehensive bioinformatic analyses were employed. The associations among miRNA targets, OSA and OSA treatment were further explored using publicly available external datasets.

      Results Following the discovery and technical validation phases in a subset of patients with and without confirmed OSA (n = 53), eleven miRNAs were identified as candidates for the subsequent feature selection process. These miRNAs were then quantified in the remaining population (n = 472). Feature selection methods revealed that the miRNAs let-7d-5p, miR-15a-5p and miR-107 were the most informative of OSA. The predominant mechanisms linked to these miRNAs were closely related to cellular events such as cell death, cell differentiation, extracellular remodeling, autophagy and metabolism. One target of let-7d-5p and miR-15a-5p, the TFDP2 gene, exhibited significant differences in gene expression between subjects with and without OSA across three independent databases.

      Conclusion Our study identified three plasma miRNAs that, in conjunction with their target genes, provide new insights into OSA pathogenesis and reveal novel regulators and potential drug targets.

  • Referencias bibliográficas
    • M. Sánchez-de-la-Torre, F. Campos-Rodriguez, F. Barbé Obstructive sleep apnoea and cardiovascular disease Lancet Respir Med, 1 (2013), pp....
    • C. Hirotsu, J. Haba-Rubio, S.M. Togeiro, P. Marques-Vidal, L.F. Drager, P. Vollenweider, et al. Obstructive sleep apnoea as a risk factor...
    • A.V. Zinchuk, S. Jeon, B.B. Koo, X. Yan, D.M. Bravata, L. Qin, et al. Polysomnographic phenotypes and their cardiovascular implications in...
    • A.V. Zinchuk, M.J. Gentry, J. Concato, H.K. Yaggi Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches Sleep...
    • M. Gasa, R. Tamisier, S.H. Launois, M. Sapene, F. Martin, B. Stach, et al. Residual sleepiness in sleep apnea patients treated by continuous...
    • S. Vasudevan, Y. Tong, J.A. Steitz Switching from repression to activation: microRNAs can up-regulate translation Science, 318 (2007), pp....
    • B.P. Lewis, C.B. Burge, D.P. Bartel Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA...
    • G. Benincasa, D.L. DeMeo, K. Glass, E.K. Silverman, C. Napoli Epigenetics and pulmonary diseases in the horizon of precision medicine: a review Eur...
    • F. Shang, S.C. Wang, B. Gongol, S.Y. Han, Y. Cho, C.R. Schiavon, et al. Obstructive sleep apnea-induced endothelial dysfunction is mediated...
    • Y.C. Chen, P.Y. Hsu, M.C. Su, T.W. Chen, C.C. Hsiao, C.H. Chin, et al. Microrna sequencing analysis in obstructive sleep apnea and depression:...
    • A. Foinquinos, S. Batkai, C. Genschel, J. Viereck, S. Rump, M. Gyöngyösi, et al. Preclinical development of a miR-132 inhibitor for heart...
    • M.P. Dragomir, E. Fuentes-Mattei, M. Winkle, K. Okubo, R. Bayraktar, E. Knutsen, et al. Anti-miR-93-5p therapy prolongs sepsis survival by...
    • H.L.A. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M. Rodriguez-Torres, K. Patel, et al. Treatment of HCV infection by targeting microRNA N...
    • P. Trang, P.P. Medina, J.F. Wiggins, L. Ruffino, K. Kelnar, M. Omotola, et al. Regression of murine lung tumors by the let-7 microRNA Oncogene,...
    • J.F. Wiggins, L. Ruffino, K. Kelnar, M. Omotola, L. Patrawala, D. Brown, et al. Development of a lung cancer therapeutic based on the tumor...
    • H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J.J. Lee, J.O. Lötvall Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism...
    • S. Anfossi, A. Babayan, K. Pantel, G.A. Calin Clinical utility of circulating non-coding RNAs – an update Nat Rev Clin Oncol, 15 (2018), pp....
    • G. Rossi-Herring, T. Belmonte, A. Rivas-Urbina, S. Benítez, N. Rotllan, J. Crespo, et al. Circulating lipoprotein-carried miRNome analysis...
    • C. Bär, T. Thum, D. de Gonzalo-Calvo Circulating miRNAs as mediators in cell-to-cell communication Epigenomics, 11 (2019), pp. 111-113
    • C. Castaño, M. Mirasierra, M. Vallejo, A. Novials, M. Párrizas Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin...
    • J. Sánchez-Ceinos, O.A. Rangel-Zuñiga, M. Clemente-Postigo, A. Podadera-Herreros, A. Camargo, J.F. Alcalá-Diaz, et al. miR-223-3p as a potential...
    • W. Ying, H. Gao, F.C.G. Dos Reis, G. Bandyopadhyay, J.M. Ofrecio, Z. Luo, et al. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages,...
    • D.M. Gysi, A.L. Barabási Noncoding RNAs improve the predictive power of network medicine Proc Natl Acad Sci USA, 120 (2023) e2301342120
    • M.C. García-Hidalgo, J. González, I.D. Benítez, P. Carmona, S. Santisteve, M. Pérez-Pons, et al. Identification of circulating microRNA profiles...
    • D. de Gonzalo-Calvo, K. Karaduzovic-Hadziabdic, L.T. Dalgaard, C. Dieterich, M. Perez-Pons, A. Hatzigeorgiou, et al. Machine learning for...
    • E.M. Small, E.N. Olson Pervasive roles of microRNAs in cardiovascular biology Nature, 469 (2011), pp. 336-342
    • P. Lloberes, J. Durán-Cantolla, M.Á. Martínez-García, J.M. Marín, A. Ferrer, J. Corral, et al. Diagnosis and treatment of sleep apnea–hypopnea...
    • V.K. Kapur, D.H. Auckley, S. Chowdhuri, D.C. Kuhlmann, R. Mehra, K. Ramar, et al. Clinical practice guideline for diagnostic testing for adult...
    • O. Mediano, N. González Mangado, J.M. Montserrat, M.L. Alonso-Álvarez, I. Almendros, A. Alonso-Fernández, et al. International consensus document...
    • N.J. Schurch, P. Schofield, M. Gierliński, C. Cole, A. Sherstnev, V. Singh, et al. How many biological replicates are needed in an RNA-seq...
    • T. Blondal, S. Jensby Nielsen, A. Baker, D. Andreasen, P. Mouritzen, M. Wrang Teilum, et al. Assessing sample and miRNA profile quality in...
    • S.E. McGeary, K.S. Lin, C.Y. Shi, T.M. Pham, N. Bisaria, G.M. Kelley, et al. The biochemical basis of microRNA targeting efficacy Science,...
    • T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data Innovation...
    • M. Cannon, J. Stevenson, K. Stahl, R. Basu, A. Coffman, S. Kiwala, et al. DGIdb 5.0: rebuilding the drug-gene interaction database for precision...
    • M.M. Mukaka A guide to appropriate use of Correlation coefficient in medical research Malawi Med J, 24 (2012), p. 69
    • M.B. Kursa, W.R. Rudnicki Feature selection with the Boruta package J Stat Softw, 36 (2010), pp. 1-13
    • R. Genuer, J.M. Poggi, C. Tuleau-Malot VSURF: an R package for variable selection using random forests R J, 7 (2015), pp. 19-33
    • K.A. Lê Cao, D. Rossouw, C. Robert-Granié, P. Besse A sparse PLS for variable selection when integrating omics data Stat Appl Genet Mol Biol,...
    • M.C. García-Hidalgo, I.D. Benítez, M. Perez-Pons, M. Molinero, T. Belmonte, C. Rodríguez-Muñoz, et al. MicroRNA-guided drug discovery for...
    • M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, et al. limma powers differential expression analyses for RNA-sequencing and microarray...
    • B.S. Carvalho, R.A. Irizarry A framework for oligonucleotide microarray preprocessing Bioinformatics, 26 (2010), p. 2363
    • D. de Gonzalo-Calvo, P. Martínez-Camblor, C. Bär, K. Duarte, N. Girerd, B. Fellström, et al. Improved cardiovascular risk prediction in patients...
    • L. Pinilla, F. Barbé, D. de Gonzalo-Calvo MicroRNAs to guide medical decision-making in obstructive sleep apnea: a review Sleep Med Rev, 59...
    • K. Li, P. Wei, Y. Qin, Y. Wei MicroRNA expression profiling and bioinformatics analysis of dysregulated microRNAs in obstructive sleep apnea...
    • X. Yang, X. Niu, Y. Xiao, K. Lin, X. Chen MiRNA expression profiles in healthy OSAHS and OSAHS with arterial hypertension: potential diagnostic...
    • F. Santamaria-Martos, I. Benítez, F. Ortega, A. Zapater, C. Giron, L. Pinilla, et al. Circulating microRNA profile as a potential biomarker...
    • C. Chen, H.F. Lodish Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal...
    • L. Wu, C. Rong, Q. Zhou, X. Zhao, X.M. Zhuansun, S. Wan, et al. Bone marrow mesenchymal stem cells ameliorate cisplatin-induced renal fibrosis...
    • D. Chen, Y. Chen, D. Forrest, R. Bremner E2f2 induces cone photoreceptor apoptosis independent of E2f1 and E2f3 Cell Death Differ, 20 (2013),...
    • N. Mustafa, J. Mitxelena, A. Infante, O. Zenarruzabeitia, A. Eriz, A. Iglesias-ara, et al. E2f2 attenuates apoptosis of activated T lymphocytes...
    • R. Lv, X. Liu, Y. Zhang, N. Dong, X. Wang, Y. He, et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea...
    • A.A. El Solh, M.E. Akinnusi, F.H. Baddoura, C.R. Mankowski Endothelial cell apoptosis in obstructive sleep apnea: a link to endothelial dysfunction Am...
    • L. Dyugovskaya, A. Polyakov, P. Lavie, L. Lavie Delayed neutrophil apoptosis in patients with sleep apnea Am J Respir Crit Care Med, 177 (2008),...
    • K. Nemeth, R. Bayraktar, M. Ferracin, G.A. Calin Non-coding RNAs in disease: from mechanisms to therapeutics Nat Rev Genet, 25 (2024), pp....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno