Ir al contenido

Documat


Use of Optimised LSTM Neural Networks Pre-Trained With Synthetic Data to Estimate PV Generation

  • Martínez-Comesaña, Miguel [1] ; Martínez-Torres, Javier [1] Árbol académico ; Eguía-Oller, Pablo [1] Árbol académico ; López-Gómez, Javier [1]
    1. [1] Universidade de Vigo

      Universidade de Vigo

      Vigo, España

  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 9, Nº. 3, 2025, págs. 61-70
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2023.11.002
  • Enlaces
  • Resumen
    • Optimising the use of the photovoltaic (PV) energy is essential to reduce fossil fuel emissions by increasing the use of solar power generation. In recent years, research has focused on physical simulations or artifical intelligence models attempting to increase the accuracy of PV generation predictions. The use of simulated data as pre-training for deep learning models has increased in different fields. The reasons are the higher efficiency in the subsequent training with real data and the possibility of not having real data available. This work presents a methodology, based on an deep learning model optimised with specific techniques and pre-trained with synthetic data, to estimate the generation of a PV system. A case study of a photovoltaic installation with 296 PV panels located in northwest Spain is presented. The results show that the model with proper pre-training trains six to seven times faster than a model without pre-training and three to four times faster than a model pre-trained with non-accurate simulated data. In terms of accuracy and considering a homogeneous training process, all models obtained average relative errors around 12%, except the model with incorrect pre-training which performs worse.

  • Referencias bibliográficas
    • A. Abdelkader, A. Rabeh, D. Mohamed Ali, J. Mohamed, “Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/ pv...
    • J. Munkhammar, J. D.K. Bishop, J. J. Sarralde, W. Tian, R. Choudhary, “Household electricity use, electric vehicle home-charging and distributed...
    • R. Fachrizal, M. Shepero, D. Van der Meer, J. Munkhammar, J. Widén, “Smart charging of electric vehicles considering photovoltaic power production...
    • D. B. Richardson, “Electric vehicles and the electric grid: A review of modeling approaches, impacts, and renewable energy integration,” Renewable...
    • A. Anand, A. Shukla, H. Panchal, A. Sharma, “Thermal regulation of photovoltaic system for enhanced power production: A review,” Journal of...
    • A. R. Jordehi, “Parameter estimation of solar photovoltaic (pv) cells: A review,” Renewable and Sustainable Energy Reviews, vol. 61, pp. 354–371, 2016,...
    • S. Theocharides, G. Makrides, A. Livera, M. Theristis, P. Kaimakis, G. E. Georghiou, “Day-ahead photovoltaic power production forecasting methodology...
    • S. Dwyer, S. Teske, “Renewables 2018 global status report,” Renewables 2018 Global Status Report, 2018.
    • I. Renewable Energy Statistics, “International renewable energy agency,” Renewable Energy Target Setting, Abu Dhabi, UAE, 2015.
    • E. Bueno, P. d. S. Vicente, T. C. Pimenta, E. R. Ribeiro, “Photovoltaic array reconfiguration strategy for maximization of energy production,” International...
    • L. Prado Osco, J. Marcato Junior, A. P. Marques Ramos, L. A. de Castro Jorge, S. Narges Fatholahi, J. de Andrade Silva, E. T. Matsubara, H....
    • M. Martínez-Comesaña, L. Febrero-Garrido, E. Granada-Álvarez, J. Martínez-Torres, S. Martínez-Mariño, “Heat loss coefficient estimation applied...
    • M. Nabipour, P. Nayyeri, H. Jabani, S. S., A. Mosavi, “Predicting stock market trends using machine learning and deep learning algorithms...
    • L. Mert, “Agnostic deep neural network approach to the estimation of hydrogen production for solar-powered systems,” International Journal of...
    • P. Dhanith, B. Surendiran, S. Raja, “A word embedding based approach for focused web crawling using the recurrent neural network,” International Journal...
    • M. Martínez-Comesaña, L. Febrero-Garrido, F. Troncoso-Pastoriza, J. Martínez-Torres, “Prediction of building’s thermal performance using lstm...
    • R. R. Kumari, V. V. Kumar, K. R. Naidu, “Optimized dwt based digital image watermarking and extraction using rnn-lstm,” International Journal...
    • X.-H. Le, H. V. Ho, G. Lee, S. Jung, “Application of long short-term memory (lstm) neural network for flood forecasting,” Water, vol. 11,...
    • M. Chai, F. Xia, S. Hao, D. Peng, C. Cui, W. Liu, “Pv power prediction based on lstm with adaptive hyperparameter adjustment,” IEEE Access, vol....
    • M. Khodayar, M. E. Khodayar, S. Mohammad Jafar Jalali, “Deep learning for pattern recognition of photovoltaic energy generation,” The Electricity Journal,...
    • M. S. Hossain, H. Mahmood, “Short-term photovoltaic power forecasting using an lstm neural network and synthetic weather forecast,” IEEE Access, vol....
    • M. Abdel-Nasser, K. Mahmoud, “Accurate photovoltaic power forecasting models using deep lstm-rnn,” Neural Computing and Applications, vol....
    • L. Yang, A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020,...
    • M. Martínez-Comesaña, P. Eguía-Oller, J. Martínez-Torres, L. Febrero- Garrido, E. Granada-Álvarez, “Optimisation of thermal comfort and indoor...
    • Y. Yoo, “Hyperparameter optimization of deep neural network using univariate dynamic encoding algorithm for searches,” Knowledge- Based Systems,...
    • Y. Novaria Kunang, S. Nurmaini, D. Stiawan, B. Yudho Suprapto, “Attack classification of an intrusion detection system using deep learning and...
    • Y. Guo, J.-Y. Li, Z.-H. Zhan, “Efficient hyperparameter optimization for convolution neural networks in deep learning: A distributed particle swarm...
    • S. Lee, J. Kim, H. Kang, D.-Y. Kang, J. Park, “Genetic algorithm based deep learning neural network structure and hyperparameter optimization,” Applied...
    • H. Chung, K.-S. Shin, “Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction,” Neural Computing...
    • Á. A. Domingo, M. A. Ezquerra, “Gpgpu implementation of a genetic algorithm for stereo refinement,” International Journal of Interactive Multimedia...
    • M. Martínez-Comesaña, A. Ogando-Martínez, F. Troncoso-Pastoriza, J. López-Gómez, L. Febrero-Garrido, E. Granada-Álvarez, “Use of optimised...
    • R. Damaševičius, M. Gupta, N. Kumar, B. K. Singh, N. Gupta, “Nsga- iii-based deep-learning model for biomedical search engines,” Mathematical...
    • P. Trampert, D. Rubinstein, F. Boughorbel, C. Schlinkmann, M. Luschkova, P. Slusallek, T. Dahmen, S. Sandfeld, “Deep neural networks for analysis of...
    • J. Liu, J. Gu, H. Li, K. H. Carlson, “Machine learning and transport simulations for groundwater anomaly detection,” Journal of Computational...
    • K. Antczak, “Deep recurrent neural networks for ecg signal denoising,” 2018. [Online]. Available: https://arxiv.org/abs/1807.11551, doi: 10.48550/ ARXIV.1807.11551.
    • Q. Wang, J. Gao, W. Lin, Y. Yuan, “Learning from synthetic data for crowd counting in the wild,” in Proceedings of the IEEE/CVF Conference...
    • J. C. Balloch, I. Agrawal, Varun Essa, S. Chernova, “Unbiasing semantic segmentation for robot perception using synthetic data feature transfer,” 2018....
    • Y. Yu, X. Si, C. Hu, J. Zhang, “A review of recurrent neural networks: Lstm cells and network architectures,” Neural computation, vol. 31,...
    • A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network,” Physica D: Nonlinear Phenomena, vol....
    • Y. Hu, A. E. G. Huber, J. Anumula, S. Chii Liu, “Overcoming the vanishing gradient problem in plain recurrent networks,” CoRR, vol. abs/1801.06105, 2018.
    • S. Jha, A. Dey, R. Kumar, V. Kumar, “A novel approach on visual question answering by parameter prediction using faster region based convolutional...
    • A. H. Elkasem, S. Kamel, A. Rashad, F. J. Melguizo, “Optimal performance of doubly fed induction generator wind farm using multi-objective genetic...
    • S. Katoch, S. S. Chauhan, V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimedia Tools and Applications, vol. 80,...
    • A. Vukadinović, J. Radosavljević, A. Ðorđević, M. Protić, N. Petrović, “Multi-objective optimization of energy performance for a detached residential...
    • S. Wang, D. Zhao, J. Yuan, H. Li, Y. Gao, “Application of nsga-ii algorithm for fault diagnosis in power system,” Electric Power Systems Research,...
    • M. A. J. Idrissi, H. Ramchoun, Y. Ghanou, M. Ettaouil, “Genetic algorithm for neural network architecture optimization,” in 2016 3rd International Conference...
    • Y. Wu, J. Wei, W. Ying, Y. Lan, Z. Cui, Z. Wang, “A collaborative decomposition-based evolutionary algorithm integrating normal and penalty-based...
    • S. Verma, M. Pant, V. Snasel, “A comprehensive review on nsga-ii for multi-objective combinatorial optimization problems,” IEEE Access, vol....
    • F. Troncoso-Pastoriza, M. Martínez-Comesaña, A. Ogando-Martínez, J. López-Gómez, P. Eguía-Oller, L. Febrero-Garrido, “Iot-based platform for...
    • Z. Pang, F. Niu, Z. O’Neill, “Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons,”...
    • U. O. W.-M. Solar Energy Laboratory, TRNSYS, a transient simulation program. Madison, Wis. : The Laboratory, 1975., 1975.
    • A. Remlaoui, D. Nehari, M. Laissaoui, A. M. Sandid, “Performance evaluation of a solar thermal and photovoltaic hybrid system powering a direct...
    • J. López Gómez, A. Ogando Martínez, F. Troncoso Pastoriza, L. Febrero Garrido, E. Granada Álvarez, J. A. Orosa García, “Photovoltaic power prediction...
    • X. de Galicia, “Meteogalicia,” 2021. [Online]. Available: https://www. meteogalicia.gal/web/RSS/ rssIndex.action, Last access: 12 September 2022.
    • NOAA, “The global forecast system (gfs) - global spectral model (gsm),” 2021. [Online]. Available: https://www. emc.ncep.noaa.gov/emc/pages/ numerical_forecast_systems/gfs/documentation.php,...
    • G. Van Rossum, F. L. Drake Jr, “Python/c api reference manual,” Python Software Foundation, 2002.
    • S. Martínez, E. Pérez, P. Eguía, A. Erkoreka, E. Granada, “Model calibration and exergoeconomic optimization with nsga-ii applied to a residential cogeneration,”...
    • A. E. I. Brownlee, J. A. Wright, “Constrained, mixed-integer and multi- objective optimisation of building designs by nsga-ii with fitness approximation,”...
    • M. K. Park, J. M. Lee, W. H. Kang, J. M. Choi, K. H. Lee, “Predictive model for pv power generation using rnn (lstm),” Journal of Mechanical...
    • B. Kim, D. Suh, “Solar photovoltaic generation forecasting using machine learning methods,” The Journal of Contents Computing, vol. 2, no....
    • B. Kim, D. Suh, “A hybrid spatio-temporal prediction model for solar photovoltaic generation using numerical weather data and satellite images,”...
    • ANSI/ASHRAE, “Measurement of energy and demand savings,” in ASHRAE Guideline 14-2002, vol. 8400, 2002, p. 170.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno