Ir al contenido

Documat


Quasi-Periodic Solutions for Two Dimensional Generalized Boussinesq Equation with Higher Order Nonlinearity

  • Yanling Shi [1]
    1. [1] Yancheng Institute of Technology

      Yancheng Institute of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, two dimensional generalized Boussinesq equation utt − u + 2u + (u5) = 0, x ∈ T2, t ∈ R under periodic boundary conditions is considered. It is proved that the above equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is based on an infinite dimensional KAM theorem, partial Birkhoff normal form and scaling skills.

  • Referencias bibliográficas
    • 1. Bambusi, M., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Comm. Math. Phys. 219, 465–480...
    • 2. Berti, M.: KAM for Vortex Patches. Regular & Chaotic Dynamics 29(4), 654–676 (2024)
    • 3. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear...
    • 4. Bourgain, J.: Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5, 629–639 (1995)
    • 5. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. 148, 363–439 (1998)
    • 6. Bourgain, J.: Nonlinear Schrödinger equations, Park City Ser., 5, American Mathematical Society, Providence, (1999)
    • 7. Bourgain, J., Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies., 158, Princeton...
    • 8. Boussinesq, M.: Théorie générale des mouvements qui sout propagés dans un canal rectangularire horizontal. C. R. Acad. Sci. Paris 73, 256–260...
    • 9. Boussinesq, M.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide...
    • 10. Boussinesq, M. J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants á l’Académie des Sciences Inst. France,...
    • 11. Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513 (2006)
    • 12. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math. 46, 1409–1498 (1993)
    • 13. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. of Math. 172, 371– 435 (2010)
    • 14. Eliasson, H., Grebert, B., Kuksin, S.B.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26, 1588–1715 (2016)
    • 15. Ge, C., Geng, J.: KAM tori for higher dimensional quintic beam equation. J. Dyn. Diff. Equat. 31, 305–319 (2019)
    • 16. Ge, C., Geng, J., Lou, Z.: KAM theory for the reversible perturbations of 2D linear beam equations. Math. Z. 297(3–4), 1693–1731 (2021)
    • 17. Ge, C., Geng, J.: Quasi-periodic solutions for quintic completely resonant derivative beam equations on T 2. J. Math. Phys. 64(9), 305–319...
    • 18. Geng, J., Yi, Y.: Quasi-periodic solutions in a nonlinear Schrödinger equation. J. Differential Equations 233, 512–542 (2007)
    • 19. Geng, J., You, J.: A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J. Differential Equations...
    • 20. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Comm. Math. Phys 262, 343–372...
    • 21. Geng, J., You, J.: KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity 19, 2405–2423 (2006)
    • 22. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation....
    • 23. Geng, J., Zhou, S.: An infinite dimensional KAM theorem with application to two dimensional completely resonant beam equation. J. Math....
    • 24. Go´mez-Serrano,J. Ionescu,A. and Park, J., Quasiperiodic solutions of the generalized SQG equation, Arxiv, arxiv2303.03992
    • 25. Kuksin, S.B.: Nearly integrable infinite-dimensional Hamiltonian systems. Lecture Notes in Mathematics, vol. 1556. Springer-Verlag, Berlin...
    • 26. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. of Math....
    • 27. Liang, Z., You, J.: Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity. SIAM J. Math. Anal. 36, 1965–1990...
    • 28. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 119–148 (1996)
    • 29. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71, 269–296 (1996)
    • 30. Shi, Y., Xu, J., Xu, X.: On quasi-periodic solutions for a generalized Boussinesq equation. Nonlinear Anal. 105, 50–61 (2014)
    • 31. Tao, L., Wu, J.: The 2D Boussinesq equations with vertical dissipation and linear stability of shear flows. J. Differential Equations...
    • 32. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys. 127, 479–528 (1990)
    • 33. Xu, J., Qiu, Q., You, J.: A KAM theorem of degenerate infinie-dimensioanl Hamiltonian systems. Sci. China Ser A. 39(372–383), 384–394...
    • 34. Xu, J., Qiu, Q., You, J.: Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–387 (1997)
    • 35. Ye, Z., Xu, X.: Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation. J. Differential Equations...
    • 36. Yuan, X.: Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differential Equations 230, 213–274 (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno