Ir al contenido

Documat


Sufficient Conditions to have Global Centers via Branching Theory

  • Jaume Giné [1] Árbol académico ; Xiao Yang [2]
    1. [1] Universitat de Lleida

      Universitat de Lleida

      Lérida, España

    2. [2] School of Mathematics and Statistic
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • It has always been challenging to identify global centers in a planar differential system, despite the recent proposal of a new algorithm to determine such centers. In this paper, we present a novel method for establishing sufficient conditions to achieve a global center. This method is based on determining all the branches that pass through the point at infinity. We apply the method to a specific example to demonstrate how it circumvents the traditional blow-up procedure.

  • Referencias bibliográficas
    • 1. Poincaré, H.: Mémoire sur les courbes définies par les équations différentielles. J. de Math. 37, 375–422 (1881)
    • 2. Poincaré, H.: Oeuvres de Henri Poincaré, vol. I, pp. 3–84. Gauthier-Villars, Paris (1951)
    • 3. Huygens, C.: Horologium oscillatorium sive de motu pendularium, (theory and design of the pendulum clock, dedicated to Louis XIV of France),...
    • 4. Milham, W.I.: Time and timekeepers. MacMillan, New York (1945)
    • 5. Dulac, H.: Détermination et integration d’une certaine classe d’équations différentielle ayant par point singulier un centre. Bull. Sci....
    • 6. García, I.A., Giné, J., Llibre, J.: Characterization of global centers by the monodromy at infinity. Commun. Nonlinear Sci. Numer. Simulat....
    • 7. García, I.A., Giné, J., Rodero, A.L., Yang, X.: A new characterization of the Jacobian conjecture in the real plane and some consequences....
    • 8. Ilyashenko, Y., Yakovenko, S.: Lectures on analytic differential equations. Graduate Studies in Mathematics, 86. American Mathematical...
    • 9. Arnold, V.: Chapitres supplémentaires de la théorie des équations différentielles ordinaires. (French) [Supplementary chapters to the theory...
    • 10. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Elsevier Science, NorthHolland (2000)
    • 11. Bruno, A.D.: Asymptotic behaviour and expansions of solutions of an ordinary differential equation. Russ. Math. Surv. 59(3), 429 (2004)
    • 12. Demina, M.V.: The Darboux polynomials and integrability of polynomial Levinson-Smith differential equations, Internat. J. Bifur. Chaos...
    • 13. Ince, E.L.: Ordinary Differential Equations. Dover Publications, New York (1944)
    • 14. Casas-Alvero, E.: Singularities of plane curves. London Mathematical Society Lecture Note Series, 276. Cambridge University Press, Cambridge,...
    • 15. Galeotti, M., Villarini, M.: Some properties of planar polynomial systems of even degree. Ann. Mat. Pura. Appl. 161(4), 299–313 (1992)
    • 16. Llibre, J., Valls, C.: Polynomial differential systems with even degree have no global centers. J. Math. Anal. Appl. 503, 125281 (2021)
    • 17. Giné, J.: Conditions for the existence of a center for the Kukles homogeneous systems. Comput. Math. Appl. 43(10–11), 1261–1269 (2002)
    • 18. da Cruz, L.P., Llibre, J.: Global centres in a class of quintic polynomial differential systems, Proceedings of the Royal Society of Edinburgh...
    • 19. García, I.A., Giné, J.: Characterization of centers by its complex separatrices, J. Differential Equations 442, 113506 (2025) arXiv:2412.09197...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno