Ir al contenido

Documat


Baby Mandelbrot Sets and Spines in Some One-Dimensional Subspaces of the Parameter Space for Generalized McMullen Maps

  • Suzanne Boyd [2] ; Matthew Hoeppner [1]
    1. [1] Hope College

      Hope College

      City of Holland, Estados Unidos

    2. [2] University of Wisconsin Milwaukee
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • For the family of complex rational functions of the form Rn,a,c(z) = zn + a zn + c, known as “Generalized McMullen maps”, for a = 0 and n ≥ 3 fixed, we study the boundedness locus in some one-dimensional slices of the (a, c)-parameter space, by fixing a parameter or imposing a relation. First, if we fix c with |c| ≥ 6 while allowing a to vary, assuming a modest lower bound on n in terms of |c|, we establish the location in the a-plane of n “baby" Mandelbrot sets, that is, homeomorphic copies of the original Mandelbrot set. We use polynomial-like maps, introduced by Douady and Hubbard ([9]) and applied for the subfamily Rn,a,0 by Devaney ([4]). Second, for slices in which c = ta, we again observe what look like baby Mandelbrot sets within these slices, and begin the study of this subfamily by establishing a neighborhood containing the boundedness locus.

  • Referencias bibliográficas
    • 1. Blanchard, P., Devaney, R.L., Garijo, A., Russell, E.D.: A generalized version of the McMullen domain. Internat. J. Bifur. Chaos Appl....
    • 2. Boyd, S., Mitchell, A.J.: The boundedness locus and baby Mandelbrot sets for some generalized McMullen maps. Internat. J. Bifur. Chaos...
    • 3. Boyd, S., Schulz, M.J.: Geometric limits of mandelbrot and julia sets under degree growth. Int. J. Bifurc. Chaos 22(12), 1250301 (2012)
    • 4. Devaney, R.L.: Baby Mandelbrot sets adorned with halos in families of rational maps. In: complex dynamics, volume 396 of Contemp. Math.,...
    • 5. Devaney, R.L.: Dynamics of zn + λ zn ; Why the Case n = 2 is Crazy. In: conformal dynamics and hyperbolic geometry, volume 573...
    • 6. Devaney, R.L.: Singular perturbations of complex polynomials. Bull. Amer. Math. Soc. (N.S.) 50(3), 391–429 (2013)
    • 7. Devaney, R.L., Garijo, A.: Julia sets converging to the unit disk. Proc. Amer. Math. Soc. 136(3), 981–988 (2008)
    • 8. Devaney, R.L., Look, D.M., Uminsky, D.: The escape trichotomy for singularly perturbed rational maps. Indiana Univ. Math. J. 54(6), 1621–1634...
    • 9. Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18(2), 287–343 (1985)
    • 10. Jang, H., So, Y., Marotta, S.M.: Generalized baby Mandelbrot sets adorned with halos in families of rational maps. J. Difference Equ....
    • 11. Kozma, R.T., Devaney, R.L.: Julia sets converging to filled quadratic Julia sets. Ergodic Theory Dynam. Systems 34(1), 171–184 (2014)
    • 12. McMullen, C.T.: Automorphisms of rational maps. In: Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), volume 10 of Math....
    • 13. McMullen, C.T.: The Mandelbrot set is universal. In: The Mandelbrot set, theme and variations, volume 274 of London Math. Soc. Lecture...
    • 14. Xiao, Y., Qiu, W., Yin, Y.: On the dynamics of generalized McMullen maps. Ergod. Theory Dynam. Sys. 34(6), 2093–2112 (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno