Ir al contenido

Documat


Bifurcation of Limit Cycles in a Class of Piecewise Smooth Cubic Rayleigh-Liénard Systems

  • Fang Wu [1] ; Ting Chen [1] ; Xin Li [1]
    1. [1] National University of Defense Technology

      National University of Defense Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the classical problem related to bifurcation of smallamplitude limit cycles in a class of piecewise smooth cubic Rayleigh-Liénard systems.

      By using the developed Poincaré-Lyapunov method, we achieve the classifications of the center at the origin of such piecewise smooth polynomial system. We further provide the necessary and sufficient conditions of the global center. Furthermore, we establish that lower bound on the maximum number of limit cycles bifurcating from the origin is 5.

  • Referencias bibliográficas
    • 1. Bass, D., Haddara, M.: Nonlinear models of ship roll damping. Int. Shipbuild. Prog. 35(401), 5–24 (1988)
    • 2. Bejarano, J.D., Garcia-Margallo, J.: The greatest number of limit cycles of the generalized RayleighLiénard oscillator. J. Sound Vib. 221,...
    • 3. Buic˘a, A., Llibre, J., Makarenkov, O.: Asymptotic stability of periodic solutions for nonsmooth differential equations with application...
    • 4. Cândido, M.R., Llibre, J., Valls, C.: Non-existence, existence, and uniqueness of limit cycles for a generalization of the van der Pol-Duffing...
    • 5. Chen, H., Chen, X.: Dynamical analysis of a cubic Liénard system with global parameters. Nonlinearity 28, 3535–3562 (2015)
    • 6. Chen, H., Tang, Y., Xiao, D.: Global dynamics of hybrid van der Pol-Rayleigh oscillators. Physica D 428, 133021 (2021)
    • 7. Chen, H., Zhang, R., Zhang, X.: Dynamics of polynomial Rayleigh-Duffing system near infinity and its global phase portraits with a center....
    • 8. Chen, H., Zou, L.: Global study of Rayleigh-Duffing oscillators. J. Physics A 49, 165–202 (2016)
    • 9. Chen, T., Li, F., Yu, P.: Nilpotent center conditions in cubic switching polynomial Liénard systems by higher-order analysis. J. Differential...
    • 10. Chen, X., Zhang, W.: Isochronicity of centers in a switching Bautin system. J. Differential Equations 252, 2877–2899 (2012)
    • 11. Cherkas, L.A.: Conditions for a Liénard equation to have a center. Differ. Equ. 12, 201–206 (1977)
    • 12. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)
    • 13. Euzébio, R.D., Llibre, J., Tonon, D.J.: Lower bounds for the number of limit cycles in a generalized Rayleigh-Liénard oscillator. Nonlinearity...
    • 14. Garcia-Margallo, J., Bejarano, J.D.: The limit cycles of generalized Rayleigh-Liénard oscillator. J. Sound Vib. 156, 283–301 (1992)
    • 15. Gasull, A., Torregrosa, J.: Center-focus problem for discontinuous planar differential equations. Int. J. Bifurcation Chaos 13, 1755–1765...
    • 16. Gebreselassie, K., Wang, Z., Zou, L.: The uniqueness of limit cycles for a generalized Rayleigh-Liénard oscillator. Nonlinear Dyn. 112,...
    • 17. Gelfand, I.M., Kapranov, MM., Zelevinsky, AV.: Discriminants, Resultants and Multidimensional Determinants, Birkha¨user, Boston, (1994)
    • 18. Kumar, P., Kumar, A., Erlicher, S.: A modified hybrid Van der Pol-Duffing-Rayleigh oscillator for modelling the lateral walking force...
    • 19. Kuramoto, Y.: Chemical oscillations, wave and turbulence. Springer, Berlin (1984)
    • 20. Li, F., Yu, P., Tian, Y., Liu, Y.: Center and isochronous center conditions for switching systems associated with elementary singular...
    • 21. Llibre, J., Valls, C.: Global centers of the generalized polynomial Liénard differential systems. J. Differential Equations 330, 66–80...
    • 22. Lynch, S.: Small amplitude limit cycles of the generalized mixed Rayleigh-Liénard oscillator. J. Sound Vib. 178, 615–620 (1994)
    • 23. Maccarri, A.: The response of a Rayleigh-Liénard oscillator to a fundamental resonance. Nonlinear Dyn. 26, 211–230 (2001)
    • 24. Martins, R.M., Mereu, A.C.: Limit cycles in discontinuous classical Liénard equations. Nonlinear Anal. Real World Appl. 20, 67–73 (2014)
    • 25. Rayleigh, L.: The theory of sound, vol. 1. Macmillan, London (1877)
    • 26. Sun, J., James Hu, S., Li, H.: Nonlinear roll damping parameter identiffcation using free-decay data. Ocean Eng. 219, 108425 (2021)
    • 27. Tian, Y., Han, M., Xu, F.: Bifurcations of small limit cycles in Liénard systems with cubic restoring terms. J. Differential Equations...
    • 28. Tian, Y., Yu, P.: Center conditions in a switching Bautin system. J. Differential Equations 259, 1203– 1226 (2015)
    • 29. Tiwari, A.K., Devi, A.D., Pradeep, R.G., Chandrasekar, V.K.: Isochronous Liénard-type nonlinear oscillators of arbitrary dimensions, Pramana....
    • 30. Wang, H., Qian, Y.: Complex bursting dynamics in a Rayleigh-Liénard oscillator. Nonlinear Dyn. 112, 7679–7693 (2024)
    • 31. Winfree, A.T.: The geometry of biological time. Springer, New York (1980)
    • 32. Wu, Y., Han, M., Chen, X.: On the study of limit cycles of the generalized Rayleigh-Liénard oscillator. Int. J. Bifurcation Chaos 14,...
    • 33. Wu, Y., Yan, J., Zhang, C., Li, F.: Simultaneous integrability and non-linearizability at arbitrary double weak saddles and sole weak...
    • 34. Yuan, Z., Ke, A., Han, M.: On the number of limit cycles of a class of Liénard-Rayleigh oscillators. Physica D 438, 133366 (2022)
    • 35. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative theory of differential equations. Transl. Math. Monogr. Amer. Math. Soc, Providence...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno