Ir al contenido

Documat


On Nonlinear Hahn Difference Equations with Maxima

  • Longyun Zhou [1] ; JinRong Wang [1]
    1. [1] Guizhou University

      Guizhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the first and second order nonlinear Hahn difference equations with maxima. Firstly, we prove the existence and uniqueness of the solutions to the nonlinear Hahn difference equations with the help of theorem of step by step contraction. Then, we obtain a comparison theorem by constructing successive approximation sequences in combination with the weakly Picard operator (WPO). Further, the Ulam’s type stability of the nonlinear Hahn difference equations with maxima are given. Finally, two examples are given to illustrate the theoretical results.

  • Referencias bibliográficas
    • 1. Hahn, W.: Über orthogonalpolynome, die q-differenzengleichungen genügen. Math. Nachr. 2, 4–34 (1949)
    • 2. Jackson, F.H.: On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 46, 253–281 (1909)
    • 3. Risha, M.A., Annaby, M.H., Mansour, Z.S., et al.: Linear q-difference equations. Zeitschrift für Analysis und ihre Anwendungen 26, 481–494...
    • 4. Annaby, M.H., Mansour, Z.S.: q-Taylor and interpolation series for Jackson q-difference operators. J. Math. Anal. Appl. 344, 472–483 (2008)
    • 5. Birkhoff, G.D.: General theory of linear difference equations. Trans. Am. Math. Soc. 12, 243–284 (1911)
    • 6. Bird, M.T.: On generalizations of sum formulas of the Euler-MacLaurin type. Am. J. Math. 58, 487–503 (1936)
    • 7. Jordan, C.: Calculus of Finite Differences. AMS Chelsea Publishing, New York (1965)
    • 8. Kwon, K.H., Lee, D.W., Park, S.B., et al.: Hahn class orthogonal polynomials. Kyungpook Mathematical Journal 38, 259–281 (1998)
    • 9. Petronilho, J.: Generic formulas for the values at the singular points of some special monic classical Hq,ω-orthogonal polynomials. J....
    • 10. Tariboon, J., Ntouyas, S.K., Sudsutad, W.: New concepts of Hahn calculus and impulsive Hahn difference equations. Adv. Difference Equ....
    • 11. Tariboon, J., Ntouyas, S.K., Sutthasin, B.: Impulsive fractional quantum Hahn difference boundary value problems. Adv. Difference Equ....
    • 12. Annaby, M.H., Hamza, A.E., Aldwoah, K.A.: Hahn difference operator and associated JacksonNörlund integrals. J. Optim. Theory Appl. 154,...
    • 13. Hamza, A.E., Ahmed, S.M.: Theory of linear Hahn difference equations, Journal of. Adv. Math. 4, 441–461 (2013)
    • 14. Malinowska, A.B., Martins, N.: Generalized transversality conditions for the Hahn quantum variational calculus. Optimization 62, 323–344...
    • 15. Hamza, A.E., Ahmed, S.M.: Existence and uniqueness of solutions of Hahn difference equations. Adv. Difference Equ. 2013, 316 (2013)
    • 16. Jiao, Z., Jadlovská, I., Li, T.: Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities...
    • 17. Li, T., Frassu, S., Viglialoro, G.: Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production...
    • 18. Yang, Y., Meng, F.: A kind of stricter Hyers-Ulam stability of second order linear differential equations of Carathéodory type. Appl....
    • 19. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)
    • 20. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222–224 (1941)
    • 21. Rassias, T.M.: On the stability of the linear maping in Banach spaces. Proceedings of the American Mathematical Society 72, 297–300 (1978)
    • 22. Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function. Journal of Inequalities and Applications...
    • 23. Buse, C., Barbu, D., Tabassum, A.: Hyers-Ulam stability and exponential dichotomy of linear differential periodic systems are equivalent....
    • 24. Li, Y., Shen, Y.: Hyers-Ulam stability of linear differential equations of second order. Appl. Math. Lett. 23, 306–309 (2010)
    • 25. Wang, G., Zhou, M., Sun, L.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 21, 1024–1028 (2008)
    • 26. Xue, J.: Hyers-Ulam stability of linear differential equations of second order with constant coefficient. Italian Journal of Pure and...
    • 27. Zada, B.: Uniform exponential stability in the sense of Hyers and Ulam for periodic time varying linear systems. Differential Equations...
    • 28. Hamza, A.E., Alghamdi, M.A., Alasmi, S.A.: Hyers-Ulam and Hyers-Ulam-Rassias stability of firstorder linear quantum difference equations,...
    • 29. Jung, S.M.: Hyers-Ulam stability of the first-order matrix difference equations. Adv. Difference Equ. 2015, 170 (2015)
    • 30. Nam, Y.W.: Hyers-Ulam stability of loxodromic Möbius difference equation. Appl. Math. Comput. 356, 119–136 (2019)
    • 31. Anderson, D.R., Onitsuka, M.: Hyers-Ulam stability for quantum equations of Euler type. Discret. Dyn. Nat. Soc. 2020, 5626481 (2020)
    • 32. Chen, K., Si, Y.: Ulam type stability for the second-order linear Hahn difference equations. Appl. Math. Lett. 160, 109355 (2025)
    • 33. Zhai, X., Wang, J.R.: Existence and Ulam’s stability results for the first-order Hahn difference systems. Qualitative Theory of Dynamical...
    • 34. Ilea, V., Otrocol, D.: Functional differential equations with maxima, via step by step contraction principle. Carpathian Journal of Mathematics...
    • 35. Sitthiwirattham, T.: On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q, ω-derivatives....
    • 36. Rus, I.A.: Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle....
    • 37. Rus, I.A., Petrusel, A., Serban, M.A.: Weakly Picard operators: equivalent definitions, applications and open problems. Fixed Point Theory...
    • 38. Alghamdi, M.A., Alharbi, M., Bohner, M., et al.: Hyers-Ulam and Hyers–Ulam–Rassias stability of first-order nonlinear dynamic equations....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno