Ir al contenido

Documat


On the Variational Principle for BS Dimension in Amenable Group Actions

  • Lei Liu [1] ; Dongmei Peng [2]
    1. [1] Shangqiu Normal University

      Shangqiu Normal University

      China

    2. [2] Nanjing Normal University

      Nanjing Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we introduce and study the BS (Barreira-Schmeling) dimension for amenable group actions. Building on the thermodynamic formalism and dimension theory, we define a notion of BS dimension using Følner sequences and establish its foundational properties, including a Bowen pressure formula. Furthermore, we prove a Billingsley type theorem characterizing the BS dimension in terms of measuretheoretic quantities, and establish a variational principle that connects the topological and measure-theoretic versions of the BS dimension.

  • Referencias bibliográficas
    • 1. Barreira, L.: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory...
    • 2. Barreira, L.: Nonadditive thermodynamic formalism: equilibrium and Gibbs measures. Discrete Contin. Dyn. Syst. 16, 279–305 (2006)
    • 3. Barreira, L.: Almost additive thermodynamic formalism: some recent developments. Rev. Math. Phys. 22, 1147–1179 (2010)
    • 4. Barreira, L., Schmeling, J.: Sets of “non-typical” points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116,...
    • 5. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)
    • 6. Bowen, R.: Hausdorff dimension of quasi-circles. Inst. Hautes Études Sci. Publ. Math. 50, 11–25 (1979)
    • 7. M. Brin and A. Katok, On local entropy, in: Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., vol. 1007, Springer, Berlin,...
    • 8. Cao, Y., Feng, D., Huang,W.: The thermodynamic formalism for sub-multiplicative potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)
    • 9. Chen, H., Li, Z.: Upper metric mean dimension with potential for amenable group actions. Studia Math. 280, 269–304 (2025)
    • 10. Dou, D., Zheng, D., Zhou, X.: Packing topological entropy for amenable group actions. Ergodic Theory Dynam. Systems 43, 480–514 (2023)
    • 11. Engelking, R.: General Topology. PWN, Warszawa (1977)
    • 12. Feng, D., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263, 2228–2254 (2012)
    • 13. Gromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps, Part I. Math. Phys. Anal. Geom. 2, 323–415 (1999)
    • 14. Huang, W., Yi, Y.: A local variational principle of pressure and its applications to equilibrium states. Israel J. Math. 161, 29–94 (2007)
    • 15. Huang, X., Lian, Y., Zhu, C.: A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete Contin. Dyn. Syst....
    • 16. J. Jaerisch, M. Kesseböhmer and S. Lamei, Induced topological pressure for countable state Markov shifts, Stoch. Dyn. 14 (2014), 1350016,...
    • 17. Kerr, D., Li, H.: Ergodic Theory: Independence and Dichotomies. Springer, Cham (2016)
    • 18. Liang, B., Yan, K.: Topological pressure for sub-additive potentials of amenable group actions. J. Funct. Anal. 262, 584–601 (2012)
    • 19. Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115, 1–24 (2000) 20. Ma, J., Wen, Z.: A Billingsley type theorem...
    • 21. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)
    • 22. Mummert, A.: The thermodynamic formalism for almost-additive sequences. Discrete Contin. Dyn. Syst. 16, 435–454 (2006)
    • 23. Ornstein, D.S., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48, 1–141 (1987)
    • 24. Pesin, Y., Pitskel’, B.: Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl. 18, 307–318 (1984)
    • 25. Rudolph, D.J., Weiss, B.: Entropy and mixing for amenable group actions. Ann. of Math. 151, 1119– 1150 (2000)
    • 26. Z. Xing and E. Chen, Induced topological pressure for topological dynamical systems, J. Math. Phys. 56 (2015), 022707, 10 pp
    • 27. Yang, R., Chen, E., Zhou, X.: Bowen’s equations for upper metric mean dimension with potential. Nonlinearity 35, 4905–4938 (2022)
    • 28. Zhang, G.: Variational principles of pressure. Discrete Contin. Dyn. Syst. 24, 1409–1435 (2009)
    • 29. Zhao, Y., Cheng, W.: Variational principle for conditional pressure with subadditive potential. Open. Syst. Inf. Dyn. 18, 389–404 (2011)
    • 30. Zheng, D., Chen, E.: Bowen entropy for actions of amenable groups. Israel J. Math. 212, 895–911 (2016)
    • 31. Zheng, D., Chen, E.: Topological entropy of sets of generic points for actions of amenable groups. Sci China Math 61, 869–880 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno