Ir al contenido

Documat


Invasion Dynamics of a Pioneer-Climax Interaction Model with Nonlocal Dispersal

  • Haifeng Song [1] ; Yuxiang Zhang [1]
    1. [1] Tianjin University of Technology

      Tianjin University of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the invasion dynamics of a pioneer-climax interaction model with nonlocal dispersal. For a range of model parameters in which the system is nonmonotone, we prove the existence of the invasion spreading speed of the climax species and establish appropriate conditions under which the speed is linearly selected. Moreover, the existence of traveling wave solutions is further determined by the upper-lower solution method and fixed point theorem. The results show that the spreading speed is coincident with the minimum wave speed of traveling waves provided the dispersal ability of the climax species is stronger than that of the pioneer species. Our results are new in estimating the spreading speed of the pioneer-climax model with nonlocal dispersal, and complement the previous result on the existence of traveling waves for the model with monotone assumptions.

  • Referencias bibliográficas
    • 1. Brown, S., Dockery, J., Pernarowski, M.: Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species....
    • 2. Buchanan, J.: Asymptotic behavior of two interacting pioneer-climax species. Fields Inst. Commun. 21, 51–63 (1999)
    • 3. Buchanan, J.: Turing instability in pioneer/climax species interactions. Math. Biosci. 194, 199–216 (2005)
    • 4. Cao, J., Weng, P.: Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property....
    • 5. Fang, J., Zhao, X.-Q.: traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. 46, 3678–3704 (2014)
    • 6. Franke, J.E., Yakubu, A.-A.: Exclusion principles for density-dependent discrete pioneer-climax models. J. Math. Anal. Appl. 187, 1019–1046...
    • 7. Franke, J.E., Yakubu, A.-A.: Pioneer exclusion in a one-hump discrete pioneer-climax competitive system. J. Math. Biol. 32, 771–787 (1994)
    • 8. Gilbertson, N.M., Kot, M.: Dynamics of a discrete-time pioneer-climax model. Theor. Ecol. 14, 501– 523 (2021)
    • 9. Jin, Y., Zhao, X.-Q.: Spatial dynamics of a periodic population model with dispersal. Nonlinearity 22, 1167–1189 (2009)
    • 10. Huang, Y., Weng, P.: Traveling wavefronts of a difusive competing pioneer and climax system with delays. Math. Comput. Model 57, 2532–3548...
    • 11. Huang, Z., Ou, C.: Determining spreading speeds for abstract time-periodic monotone semiflows. J. Diff. Eqns. 353, 339–384 (2023)
    • 12. Kim, H., Marlin, J.A.: Solutions of a pioneer-climax model. Can. Appl. Math. Q. 7, 143–158 (1999)
    • 13. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math....
    • 14. Ma, M., Ou, C.: Linear and nonlinear speed selection for mono-stable wave propagations. SIAM J. Math. Anal. 51, 321–345 (2019)
    • 15. Ma, S.: Traveling waves for non-local delayed diffusion equations via auxiliary equations. J. Diff. Eqns. 237, 259–277 (2007)
    • 16. Olinick, M.: An Introduction to Mathematical Models in the Social and Life Sciences. Addison-Welsey, Reading, MA (1978)
    • 17. Selgrade, J.F., Namkoong, G.: Stable periodic behavior in a pioneer-climax model. Nat. Resour. Model. 4, 215–337 (1990)
    • 18. Selgrade, J.F., Namkoong, G.: Population interactions with growth rates dependent on weighted densities. Differential equation models...
    • 19. Selgrade, J.F.: Planting and harvesting for pioneer-climax models. Rocky Mountain J. Math. 24, 293– 310 (1994)
    • 20. Song, H., Zhang, Y.: Traveling waves and speed selection for the integrodifference pioneer-climax competition system. J. Diff. Equ. Appl....
    • 21. Sumner, S.: Stable periodic behavior in pioneer-climax competing species models with constant rate forcing. Nat. Resour. Model. 11, 155–171...
    • 22. Thieme, H.R.: Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations....
    • 23. Wang, H.: Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems. J. Nonlinear Sci. 21, 747–783 (2011)
    • 24. Weinberger, H.F., Lewis, M.A., Li, B.T.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol 45, 183–218 (2002)
    • 25. Weng, P., Zhao, X.-Q.: Spreading speed and traveling waves for a multi-type SIS epidemic model. J. Diff. Equ. 229, 270–296 (2006)
    • 26. Weng, P., Zou, X.: Minimal wave speed and spread speed of competing pionner and climax species. Appl. Anal. 93, 2093–2110 (2014)
    • 27. Yu, X., Weng, P., Huang, Y.: Traveling wavefronts of competing pioneer and climax model with nonlocal diffusion, Abstr. Appl. Anal., Article...
    • 28. Yuan, Z., Zou, X.: Co-invasion waves in a reaction diffusion model for competing pioneer and climax species. Nonlinear Analysis RWA 11,...
    • 29. Zhang, Y., Ma, S.: Invasion dynamics of a diffusive pioneer-climax model: monotone and nonmonotone cases. Disc. Cont. Dyn. Syst. B 26,...
    • 30. Zou, X., Wu, J.: Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method. Proc. Amer....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno