Ir al contenido

Documat


A Study on Fractional Differential Equations with a Generalized Exponential Kernel Derivative

  • Zaid Odibat [1]
    1. [1] Al-Balqa Applied Universit
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A new fractional derivative operator with a non-singular generalized exponential kernel and its extension, which includes a singular kernel, as well as the associated fractional integral operator, have recently been introduced. In this paper, we utilize the Laplace transform as an effective and useful tool to investigate and study the characterization, properties and relationships of generalized exponential kernel fractional derivatives. We discuss the unique existence of solutions to IVPs with differential equations incorporating the considered fractional derivatives and introduce a sufficient condition for existence. In addition, we provide solutions for some IVPs involving the studied fractional derivatives. Next, as a case study, we formulate a fractional extension of the logistic equation that includes the studied extended derivatives, and explore its dynamic behavior. This study focuses on the features of the generalized exponential kernel fractional derivative operator, especially the features of the extended version which provide useful suggestions regarding the modeling issue, that can later be used in fractional calculus.

  • Referencias bibliográficas
    • 1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York...
    • 2. Samko, G., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)
    • 3. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Netherlands (2006)
    • 4. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.: Fractional Calculus: Models and Numerical Methods, 3, Series on Complexity, Nonlinearity...
    • 5. Odibat, Z.: On a fractional derivative operator with a singular kernel: definition, properties and numerical simulation. Phys. Scr. 99(7),...
    • 6. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)
    • 7. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model....
    • 8. Odibat, Z., Baleanu, D.: A new fractional derivative operator with generalized cardinal sine kernel: Numerical simulation. Math. Comput....
    • 9. Odibat, Z.: A new fractional derivative operator with a generalized exponential kernel. Nonlin. Dyn. 112, 15219–15230 (2024)
    • 10. Odibat, Z., Baleanu, D.: On a generalized class of non-singular kernel operators and their singular kernel extensions: Useful modeling...
    • 11. Kumar, S.: A new analytical modelling for fractional telegraph equation via Laplace transform. Appl. Math. Model. 38(13), 3154–3163 (2014)
    • 12. Campos, R.G., Huet, A.: Numerical inversion of the Laplace transform and its application to fractional diffusion. Appl. Math. Comput....
    • 13. Burgos, C., Cortés, J.-C., Villafuerte, L., Villanueva, R.J.: Solving random fractional second-order linear equations via the mean square...
    • 14. Vu, H., Phu, N.D., Hoa, H.V.: A survey on random fractional differential equations involving the generalized Caputo fractional-order derivative....
    • 15. Fahad, H.M., Rehman, M., Fernandez, A.: On Laplace transforms with respect to functions and their applications to fractional differential...
    • 16. Bas, E., Ozarslan, R.: Real world applications of fractional models by Atangana-Baleanu fractional derivative. Chaos. Soliton. Fract....
    • 17. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos....
    • 18. Ahmad, S., Ullah, A., Akgül, A., Jarad, F.: A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel:...
    • 19. Kassim, M.D., Abdeljawad, T., Shatanawi, W., Ali, S.M., Abdo, M.S.: A qualitative study on generalized Caputo fractional integro-differential...
    • 20. Kassim, M.D., Abdeljawad, T., Ali, S.M., Abdo, M.S.: Stability of solutions for generalized fractional differential problems by applying...
    • 21. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlin. Sci. Numer. Simul....
    • 22. Khan, A., Khan, H., Gómez-Aguilar, J.F., Abdeljawad, T.: Existence and Hyers-Ulam stability for a nonlinear singular fractional differential...
    • 23. Al-Refai, M., Baleanu, D.: On an extension of the operator with Mittag-Leffler kernel. Fractals 30(5), 2240129 (2022)
    • 24. Odibat, Z., Baleanu, D.: New solutions of the fractional differential equations with modified MittagLeffler kernel. J. Comput. Nonlin....
    • 25. Odibat, Z.: Numerical solutions of linear time-fractional advection-diffusion equations with modified Mittag-Leffler operator in a bounded...
    • 26. Odibat, Z.: Numerical simulation of fractional-order Duffing system with extended Mittag-Leffler derivatives. Phys. Scr. 99(7), 075217...
    • 27. Zheng, X., Wang, H., Fu, H.: Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative. Chaos....
    • 28. Jia, J., Wang, H.: Analysis of asymptotic behavior of the Caputo-Fabrizio time-fractional diffusion equation. Appl. Math. Let. 136, 108447...
    • 29. Tuan, N.H., Nguyen, A.T., Can, N.H.: Existence and continuity results for Kirchhoff parabolic equation with Caputo-Fabrizio operator....
    • 30. Wiener, N.: Tauberian Theorems. Ann. Math. 33(1), 1–100 (1932)
    • 31. Partington, J.: Fourier transforms and complex analysis. In: Fournier, J.D., Grimm, J., Leblond, J., Partington, J.R. (eds.) Harmonic...
    • 32. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations....
    • 33. Odibat, Z.: Error analysis of the universal predictor-corrector algorithm for generalized fractional differential equations. J. Appl....
    • 34. Odibat, Z.: Numerical discretization of initial-boundary value problems for PDEs with integer and fractional order time derivatives. Commun....
    • 35. Odibat, Z.: A Finite difference-based Adams-type approach for numerical solution of nonlinear fractional differential equations: a fractional...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno