Ir al contenido

Documat


Turing-Hopf Bifurcation in a Predator-Prey Model with Nonlocal Competition and General Group Defence

  • Ali Rehman [1] ; Biao Liu [1] ; Ranchao Wu [1]
    1. [1] Anhui University

      Anhui University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates the dynamics of a prey-predator model with group defence subjected to nonlocal intra-specific competition, extending the classical diffusion model to incorporate more realistic ecological interactions. The nonlocal effect leads to the formation of complex spatiotemporal patterns. It is shown that the presence of nonlocal competition destabilizes the equilibrium point and induces Turing instability, which cannot occur in the original model. Through stability analysis, we not only derive the conditions for instability but also find the conditions under which the system exhibits Turing bifurcation, Hopf bifurcation and codimension-2 Turing-Hopf bifurcation. Furthermore, we focus on the analysis of Turing-Hopf bifurcation and obtain the normal form using the method of center manifold reduction for nonlocality. To give details of the spatiotemporal dynamics near the Turing-Hopf bifurcation point, the parameter plane is divided into six regions, with the help of the normal form at the Turing-Hopf bifurcation point, spatially homogeneous and inhomogeneous periodic solutions are shown to exist. Finally, numerical simulations are provided to support the theoretical results.

  • Referencias bibliográficas
    • 1. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)
    • 2. Lotka, A.J.: Elements of Mathematical Biology. Dover Publications, US (1956)
    • 3. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118(2972), 558–560 (1926)
    • 4. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Dekker, New York (1980)
    • 5. May, R.M.: Stability and Complexity in Model Eco-Systems. Princeton University Press, US (2019)
    • 6. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc....
    • 7. Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10(6),...
    • 8. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system. J. Math. Biol. 42,...
    • 9. Beddington, J.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340...
    • 10. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56(2), 881–892 (1975)
    • 11. Kooij, R.E., Zegeling, A.: A predator-prey model with Ivlev’s functional response. J. Math. Anal. Appl. 198, 473–489 (1996)
    • 12. Tener, J.S.: Muskoxen. Queen’s Printer, Ottawa (1965)
    • 13. Chen, S., Shi, J.: Stability and hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J Diff Equat. 253(12),...
    • 14. Holmes, J. C., Bethel, W. M.: Modification of intermediate host behaviour by parasites. Zool. J. Linn. Soc., Suppl. 1, 51, 123-149 (1972)
    • 15. Freedman, H.I., Wolkowicz, G.S.K.: Predator-prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 48(5–6),...
    • 16. Ajraldi, V., Venturino, E., Wade, B.: Mimicking spatial effects in predator-prey models with group defense. Proc. Int. Conf. CMMSE 1,...
    • 17. Chattopadhyay, J., Chatterjee, S., Venturino, E.: Patchy agglomeration as a transition from monospecies to recurrent plankton blooms....
    • 18. Venturino, E., Petrovskii, S.: Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol. Complex. 14, 37–47...
    • 19. Xu, C., Yuan, S., Zhang, T.: Global dynamics of a predator-prey model with defense mechanism for prey. Appl. Math. Lett. 62, 42–48 (2016)
    • 20. Ajraldi, V., Pittavino, M., Venturino, E.: Modeling herd behavior in population systems. Nonlinear Anal. Real World Appl. 12(4), 2319–2338...
    • 21. Braza, P.A.: Predator-prey dynamics with square root functional responses. Nonlinear Anal. RealWorld Appl. 13, 1837–1843 (2012)
    • 22. Tang, X., Song, Y.: Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality....
    • 23. Tang, X., Jiang, H., Deng, Z., Yu, T.: Delay induced subcritical Hopf bifurcation in a diffusive predatorprey model with herd behavior...
    • 24. Song, Y., Tang, X.: Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis....
    • 25. Ghorai, S., Poria, S.: Emergent impacts of quadratic mortality on pattern formation in a predator-prey system. Nonlinear Dyn. 87, 2715–2734...
    • 26. Liu, X., Meng, T., Zhang, T.: Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality, and prey-taxis....
    • 27. Singh, T., Banerjee, S.: Spatiotemporal model of a predator-prey system with herd behavior and quadratic mortality. Int. J. Bifurcation...
    • 28. Yang, J., Yuan, S., Zhang, T.: Complex dynamics of a predator-prey system with herd and schooling behavior: with or without delay and...
    • 29. Jiang, H.: Turing bifurcation in a diffusive predator-prey model with schooling behavior. Appl. Math. Lett. 96, 230–235 (2019)
    • 30. Xiao, J., Xia, Y.: Spatiotemporal dynamics in a diffusive predator-prey model with multiple Allee effect and herd behavior. J. Math. Anal....
    • 31. Furter, J., Grinfeld, M.: Local vs. non-local interactions in population dynamics. J. Math. Biol. 27(1), 65–80 (1989)
    • 32. Banerjee, M., Volpert, V.: Prey-predator model with a nonlocal consumption of prey. Chaos 26(8), 083120 (2016)
    • 33. Pal, S., Ghorai, S., Banerjee, M.: Analysis of a prey-predator model with non-local interaction in the prey population. Bull. Math. Biol....
    • 34. Wang, F., Yang, R.: Dynamics of a delayed reaction-diffusion predator-prey model with nonlocal competition and double Allee effect in...
    • 35. Chen, S., Yu, J.: Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete Contin. Dyn. Syst. 38(1),...
    • 36. Djilali, S., Bentout, S.: Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Appl. Math. 169,...
    • 37. Peng, Y., Zhang, G.: Dynamics analysis of a predator-prey model with herd behavior and nonlocal prey competition. Math. Comput. Simul....
    • 38. Shi, Q., Shi, J., Song, Y.: Effect of spatial average on the spatiotemporal pattern formation of reactiondiffusion systems. J. Dyn. Differ....
    • 39. Peng, Y., Yu, K.: Turing pattern of a diffusive predator-prey model with nonlocal delay and herd behavior. J. Math. Anal. Appl. 527(1),...
    • 40. Wang, F., Yang, R.: Spatial pattern formation driven by the cross-diffusion in a predator-prey model with Holling type functional response....
    • 41. Wang, F., Yang, R., Zhang, X.: Turing patterns in a predator-prey model with double Allee effect. Math. Comput. Simul. 220, 170–191 (2024)
    • 42. Pal, P.J., Mandal, G., Guin, L.N., Saha, T.: Allee effect and hunting-induced bifurcation inquisition and pattern formation in a modified...
    • 43. Ma, Y., Yang, R.: Hopf-Hopf bifurcation in a predator-prey model with nonlocal competition and refuge in prey. Discrete Contin. Dyn. Syst....
    • 44. Song, Y., Jiang, H., Liu, Q.X., Yuan, Y.: Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation. SIAM...
    • 45. Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Amer. Math. Soc. 352(5), 2217–2238...
    • 46. Du, Y., Sui, M.: Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition and nonlocal...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno