Ir al contenido

Documat


On the Differential Inequality u + ku ≥ 0 and Applications to Eigenvalue Problems

  • Mohamed Jleli [1] ; Bessem Samet [1]
    1. [1] King Saud University

      King Saud University

      Arabia Saudí

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, we introduce and study the class of k-convex functions, that is, the class of functions u ∈ C2(I) satisfying the second-order differential inequality u(t) + ku (t) ≥ 0, t ∈ I, where I is an interval of R and k = 0 is a constant. Among many other results, a Fejér-type inequality for k-convex functions is established. Making use of the obtained inequality, a general Lyapunov-type inequality is obtained for the eigenvalue problem − u(t) + ku (t) = λw(t)u(t), a < t < b, where k > 0, λ > 0, and w ∈ C([a, b])is a positive function. Next, different boundary conditions are investigated. To the best of our knowledge, this work is the first one showing a connection between Fejér-type inequalities and Lyapunov-type inequalities.

  • Referencias bibliográficas
    • 1. Ahmad, B., Alsaedi, A., Kirane, M., Torebek, B.T.: Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities...
    • 2. Akbar, S.B., Abbas, M., Budak, H.: Generalization of quantum calculus and corresponding HermiteHadamard inequalities. Anal. Math. Phys....
    • 3. Barsam, H., Ramezani, S.M., Sayyari, Y.: On the new Hermite-Hadamard type inequalities fors-convex functions. Afr. Mat. 32, 1355–1367 (2021)
    • 4. Barsam, H., Sayyari, Y.: On Some inequalities of differentiable uniformly convex mapping with applications. Numer. Funct. Anal. Optim....
    • 5. Barsam, H., Sayyari, Y.: A generalization of G A-convex functions and applications. J Optim Theory Appl. 204, 24 (2025). https://doi.org/10.1007/s10957-024-02605-0
    • 6. Borg, G.: UberdieStabilität gewisser Klassen von linearen differentialgleichungen, Ark. for Matematik. Astronomi och Fysik. 31, 1–31 (1945)
    • 7. Dhar, S., Kelly, J.S., Kong, Q.K.: Lyapunov-type inequalities for third-order linear and half-linear difference equations and extensions....
    • 8. Dragomir, S.S., Garayev, M.T.: New norm inequalities for Jensen’s gap of analytic functions in Banach algebras with applications. Georgian...
    • 9. Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. Victoria University, RGMIA Monographs...
    • 10. Du, T.S., Peng, Y.: Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals. J. Comput. Appl. Math....
    • 11. Fejér, L.: Über die Fourierreihen, II, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24, 369–390 (1906)
    • 12. Ferreira, R.A.C.: A Lyapunov-type inequality for a fractional boundary value problem. Frac. Calc. Appl. Anal. 16, 978–984 (2013)
    • 13. Fink, A.M.: Differential inequalities and disconjugacy. J. Math. Anal. Appl. 49, 758–772 (1975)
    • 14. Howls, F.A.: The asymptotic solution of a class of singularly perturbed nonlinear boundary value problems via differential inequalities....
    • 15. Jleli, M., Kirane, M., Samet, B.: Lyapunov-type inequalities for fractional partial differential equations. Appl. Math. Lett. 66, 30–39...
    • 16. Kassymov, A., Torebek, T.: Lyapunov-type inequalities for a nonlinear fractional boundary value problem, Rev. Real Acad. Cienc. Exactas....
    • 17. Kolmanovskii, V.: Applications of differential inequalities for stability of some functional differential equations. Nonlinear Anal. 25,...
    • 18. Lupinska, B.: Existence and nonexistence results for fractional mixed boundary value problems via a Lyapunov-type inequality. Period....
    • 19. Lyapunov, A.M.: Probème général de la stabilité du mouvement. Ann. de la Faculté de Toulouse. 9, 203–474 (1907)
    • 20. Morchalo, J.: On the application of differential inequalities to stability theory. Demonstratio Mathematica. 17, 955–974 (1984)
    • 21. Nehari, Z.: On the zeros of solutions of second-order linear differential equations. Am. J. Math. 76, 689–697 (1954)
    • 22. Patula, W.T.: On the distance between zeros. Proc. Amer. Math. Soc. 52, 247–251 (1975)
    • 23. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall Inc, Englewood Cliffs, N.J. (1967)
    • 24. Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)
    • 25. Sajo, E.: On the recursive properties of Dawson’s integral. J. Phys. A: Math. Gen. 26, 2977–2987 (1993)
    • 26. Takeuchi, S., Watanabe, K.: Lyapunov-type inequalities for a Sturm-Liouville problem of the onedimentional p-Laplacian. Differential Integral...
    • 27. Wintner, A.: On the nonexistence of conjugate points. Am. J. Math. 73, 368–380 (1951)
    • 28. Zhang, L.L., Peng, Y., Du, T.S.: On multiplicative Hermite-Hadamard-and Newton-type inequalities for multiplicatively (P, m)-convex functions....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno