Ir al contenido

Documat


Meromorphic Integrability of Perturbations of Quadratic Systems

  • Xiongkun Wang [1] ; Changjian Liu [1]
    1. [1] Sun Yat-sen University

      Sun Yat-sen University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this article, we study the integrability of analytic perturbations of quadratic homogeneous differential system F = F2 + h.o.t. where the origin is an isolated singular point of F2. Algaba et al. [Mediterr. J. Math. 18, 8 (2021)] proved that, under the condition that F2 is polynomially integrable, the above system is analytically integrable at the origin if and only if F is orbitally equivalent to F2. Here we give a proof in a different way from Algaba et al. Furthermore, we prove that, under the condition that F2 is rationally integrable, if the parameters of F2 satisfy certain conditions, then the above system is formal meromorphically integrable at the origin if and only if F is orbitally equivalent to F2.

  • Referencias bibliográficas
    • 1. Algaba, A., Gamero, E., García, C.: Analytic integrability of perturbations of quadratic systems. Mediterr. J. Math. 18, 1–17 (2021)
    • 2. Algaba, A., Gamero, E., García, C.: The integrability problem for a class of planar systems. Nonlinearity 22, 395–420 (2009)
    • 3. Algaba, A., García, C., Reyes, M.: Rational integrability of two-dimensional quasi-homogeneous polynomial differential systems. Nonlinear...
    • 4. Algaba, A., García, C., Reyes, M.: Analytical integrability problem for perturbations of cubic Kolmogorov systems. Chaos Solitons Fractals...
    • 5. Algaba, A., García, C., Reyes, M.: Analytically integrable centers of perturbations of cubic homogeneous systems. Qual. Theory Dyn. Syst....
    • 6. Algaba, A., García, C., Reyes, M., Giné, J.: Analytical integrability of perturbations of degenerate quadratic systems. Journal of Applied...
    • 7. Basov, V.V.: Generalized normal form and formal equivalence of two dimensional systems with zero quadratic approximation. III. Differ....
    • 8. Basov, V.V., Fedorova, E.V.: Generalized normal form and formal equivalence of two-dimensional systems with zero quadratic approximation....
    • 9. Basov, V.V., Skitovich, A.V.: Generalized normal form and formal equivalence of two-dimensional systems with zero quadratic approximation....
    • 10. Basov, V.V., Skitovich, A.V.: Generalized normal form and formal equivalence of two-dimensional systems with zero quadratic approximation....
    • 11. Chen, X., Giné, J., Romanovski, V.G., Shafer, D.S.: The 1:-q resonant center problem for certain cubic Lotka-Volterra systems. Appl. Math....
    • 12. Cong, W., Llibre, J., Zhang, X.: Generalized rational first integrals of analytic differential systems. J. Differ. Equ. 251(10), 2770–2788...
    • 13. Christopher, C., Mardešic, P., Rousseau, C.: Normalizable, integrable, and linearizable saddle points for complex quadratic systems in...
    • 14. Christopher, C., Rousseau, C.: Normalizable, integrable and linearizable saddle points in the LotkaVolterra system. Qual. Theory Din....
    • 15. Dulac, H., Rousseau, C.: Détermination et intégration d’une certaine classe d’équations différentielles ayant pour point singulier un...
    • 16. Giné, J., Grau, M., Llibre, J.: Polynomial and rational first integrals for planar homogeneous polynomial differential systems. Publ....
    • 17. Giné, J., Grau, M., Llibre, J.: Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems....
    • 18. Giné, J., Romanovski, V.G.: Integrability conditions for Lotka-Volterra planar complex quintic systems. Nonlinear Anal. Real World Appl....
    • 19. Huang, K., Shi, S., Li, W.: Meromorphic non-integrability of several 3D dynamical systems. Entropy 19, 211 (2017)
    • 20. Huang, K., Shi, S., Li, W.: Integrability analysis of the Shimizu-Morioka system. Commun. Nonlinear Sci. Numer. Simul. 84, 105101 (2020)
    • 21. Laurent, P.A.: Extension du théoreme de M. Cauchy relatifa la convergence du développement d’une fonction suivant les puissances ascendantes...
    • 22. Liu, C., Chen, G., Li, C.: Integrability and linearizability of the Lotka-Volterra systems. J. Differ. Equ. 198, 301–320 (2004)
    • 23. Mattei, J.F., Moussu, R.: Holonomie et inte´grales premie´res, Ann. Sci. E´ cole Norm. Sup. 13 (4), 469-523 (1980)
    • 24. Poincare´, H.: Me´moire sur les courbes de´finies par les e´quations diffe´rentielles, J Math Pures Appl, 4, 167-244 (1885)
    • 25. Stro´z˙yna, E.: Normal forms for germs of vector fields with quadratic leading part. The polynomial first integral case, J. Differ. Equ....
    • 26. Szumi ´nski, W.: Integrability analysis of chaotic and hyperchaotic finance systems. Nonlinear Dyn. 94, 443–459 (2018)
    • 27. Szumi ´nski, W., Przybylska, M.: Differential Galois integrability obstructions for nonlinear threedimensional differential systems, Chaos...
    • 28. Zhang, Q., Liu, Y.: Integrability and generalized center problem of resonant singular point. Appl. Math. Lett. 40, 13–16 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno