Ir al contenido

Documat


Ground State Sign-Changing Solution for a Fractional Schrödinger-Poisson System with Critical Exponent and Steep Potential Well

  • Jiao Fu [1] ; Jia-Feng Liao [1]
    1. [1] China West Normal University

      China West Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the following fractional Schrödinger-Poisson system with critical exponent (−)su + Vλ(x)u + φu = |u| 2∗ s −2u + f (u), in R3, (−)t φ = u2, in R3, where s ∈ ( 3 4 , 1), t ∈ (0, 1), 2∗ s := 6 3−2s is the fractional critical exponent, Vλ(x) = λV(x)+1 with λ > 0. Under some suitable assumptions on f and V, if λ > 0 is large enough, we prove the existence of ground state sign-changing solutions for the above system by using the constraint variational method and the quantitative deformation lemma. Moreover, the least energy of sign-changing solution is strictly more than twice the energy of the ground state solution. At the same time, we also study the asymptotic behavior of ground state sign-changing solutions as λ → ∞. Our results improve the recent results in the literature.

  • Referencias bibliográficas
    • 1. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)
    • 2. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)
    • 3. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)
    • 4. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)
    • 5. Bartsch, T., Tang, Z.W.: Multibump solutions of nonlinear Schröinger equations with steep potential well and indefinite potential. Discrete...
    • 6. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on RN . Comm. Partial Differential Equations....
    • 7. Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents....
    • 8. Chang, S.Y.A.: González M del M, Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)
    • 9. Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity....
    • 10. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman Hall/CRC Financial Math Series, (2003)
    • 11. D’Aprile, P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud....
    • 12. Ding, Y.H., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differential...
    • 13. Feng, S.H., Chen, J.H., Sun, J.J., Huang, X.J.: Least energy sign-changing solutions for fractional critical Kirchhoff-Schrödinger-Poisson...
    • 14. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math....
    • 15. Hofer, H.: Variational and topological methods in partially ordered Hilbert spaces. Math. Ann. 261, 493–514 (1982)
    • 16. Huang, X.Q., Liao, J.F.: Existence and asymptotic behavior for ground state sign-changing solutions of fractional Schrödinger-Poisson...
    • 17. Huang, X. Q., Liao, J. F., Liu, R. Q.: Ground state sign-changing solutions for a Schrödinger-Poisson system with steep potential well...
    • 18. Jiang, Y.S., Zhou, H.S.: Schrödinger-Poisson system with steep potential well. J. Differential Equations. 251, 582–608 (2011)
    • 19. Ji, C.: Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system in R3. Ann. Mat. Pura Appl....
    • 20. Kang, J. C., Liu, X. Q., Tang, C. L.: Ground state sign-changing solutions for critical SchrödingerPoisson system with steep potential...
    • 21. Kang, J.C., Liu, X.Q., Tang, C.L.: Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well. Discrete...
    • 22. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A. 268, 298–305 (2000)
    • 23. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E. 66, 056108–056114 (2002)
    • 24. Liu, Z.S., Zhang, J.J.:Multiplicity and concentration of positive solutions for the fractional SchrödingerPoisson systems with critical...
    • 25. Meng, Y.X., Zhang, X.R., He, X.M.: Ground state solutions for a class of fractional SchrödingerPoisson system with critical growth and...
    • 26. Meng, Y. X., Zhang, X. R., He, X. M.: Least energy sign-changing solutions for a class of fractional Kirchhoff-Poisson system. J. Math....
    • 27. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 77pp
    • 28. Miranda, C.: Un’osservazione su un teorema di Brouwer. (Italian) Boll. Un. Mat. Ital. 3 (1940) 5-7
    • 29. Rabinowitz, P. H.: Variational methods for nonlinear eigenvalue problems. Eigenvalues of non-linear problems. Berlin, Heidelberg: Springer...
    • 30. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
    • 31. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367, 67–102 (2015)
    • 32. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60, 67–112 (2007)
    • 33. Su, Y., Chen, H. B., Liu, S. L., Fang, X. W.: Fractional Schrödinger-Poisson systems with weighted Hardy potential and critical exponent....
    • 34. Teng, K.M., Agarwal, R.P.: Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson...
    • 35. Teng, K.M.: Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent....
    • 36. Teng, K.M.: Multiple solutions for a class of fractional Schrödinger equation in RN . Nonlinear Anal. Real World Appl. 21, 76–86 (2015)
    • 37. Wang, D.B., Zhang, H.B., Ma, Y.M., Guan, W.: Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson...
    • 38. Yu, Y.Y., Zhao, F.K., Zhao, L.G.: Positive and sign-changing least energy solutions for a fractional Schrödinger-Poisson system with critical...
    • 39. Yu, Y.Y., Zhao, F.K., Zhao, L.G.: The existence and multiplicity of solutions of a fractional SchrödingerPoisson system with critical...
    • 40. Zhang, X.R., He, X.M.: Fractional Schrödinger-Poisson system with critical growth and potentials vanishing at infinity. Math. Nachr. 296,...
    • 41. Zhong, X.J., Tang, C.L.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in R3. Nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno