Ir al contenido

Documat


Response Solutions for Nonlinear Oscillator Equation in High Order Degeneracy

  • Lu Xu [1] ; Qiuling Hua [1] ; Aoxue Liang [1] ; Wen Si [2]
    1. [1] Jilin University

      Jilin University

      China

    2. [2] Shandong University

      Shandong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Consider a quasi-periodically forced nonlinear oscillator equation as follows, x¨ + λxl = ε f (ωt, x, x˙), x ∈ R, (0.1) where λ = 0 is a fixed constant and l ≥ 2 is an integer, ω ∈ Rd is a Diophantine frequency vector, ε is a small parameter. It is well known that the main difficulty in proof of the existence of response solutions is caused by lack of linear terms in equation (0.1) and the way to overcome this is to compensate it with certain non-degeneracy among the forced function f . For instance, the authors in Si and Yi (Anna Heri Poincaré 23:333-360, 2022) assume the average of the forced function f over d-dimensional torus is non-degenerate at the p-th order, i.e. [ ∂i f (·,0,0) ∂xi ] = 0, i = 0, ··· , p − 1 and [ ∂ p f (·,0,0) ∂x p ] = 0 for certain 0 ≤ p < l/2, then prove the response solutions exist around relative equilibria that satisfy certain compensated non-degeneracy condition.

      In this paper, we consider the existence of response solutions for the equation in high order degeneracy, i.e., [ f (·, x, x˙)] is degenerate up to the p-th order for any integer p ≥ l 2 . Due to this, one can not solve for the non-degenerate relative equilibria from the average equation with forced function f in O(ε) order. However, we can normalize equation (0.1) to the new ones till the new forced function of the normalized equations satisfies compensated non-degeneracy condition such that the non-degenerate relative equilibria can be determined by the new forced function of at least O(ε2) order. Then we can still prove the existence of response solutions around the perturbed relative equilibria which reveals the mechanism for existence of response solutions when the forced function f is in high order degeneracy. For the sake of generality, we will firstly claim our main result for a normalized equation in general form and prove the existence of response solutions by finding relative equilibria, improving the order of perturbation and KAM iterations. Then we will show the recursive normalization procedure that transforms equation (0.1) to the general one with compensated nondegenerate condition. We will also give an explicitly checkable condition for the existence of response solution of (0.1) in terms of Fourier coefficients of lower order terms of f .

  • Referencias bibliográficas
    • 1. Broer, H.W., Hanssmann, H., You, J.: Bifurcations of normally parabolic tori in Hamiltonian systems. Nonlinearity 18, 1735–1769 (2005)
    • 2. Broer, H.W., Hanssmann, H., You, J.: Umbilical torus bifurcations in Hamiltonian systems. J. Differ. Equ. 222, 233–262 (2006)
    • 3. Cheng, H., Si, W., Si, J.: Whiskered tori for forced beam equations with multi-dimensional Liouvillean frequency. J. Dynam. Differ. Equ....
    • 4. Cheng, H., de la Llave, R., Wang, F.: Response solutions to the quasi-periodically forced systems with degenerate equilibrium: a simple...
    • 5. Chierchia, L., Gallavotti, G.: Drift and diffusion in-phase space. Ann. Inst. H. Poincaré Phy. Th. 69, 1–144 (1994)
    • 6. Corsi, L., Gentile, G.: Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems. Ergod. Th. Dynam. Sys....
    • 7. Corsi, L., Gentile, G.: Resonant tori of arbitrary codimension for quasi-periodically forced systems. Nonl. Differ. Equat. Appl. 24, 3...
    • 8. Du, J., Xu, L., Li, Y.: An infinite dimensional KAM theorem with normal degeneracy. Nonlinearity 37(6), 065021 (2024)
    • 9. Du, J., Ji, S., Li, Y.: Melnikov’s persistence for completely degenerate Hamiltonian systems with high co-dimension, arXiv:2301.00206
    • 10. Han, Y.C., Li, Y., Yi, Y.: Degenerate lower dimensional tori in Hamiltonian systems. J. Differ. Equ. 227, 670–691 (2006)
    • 11. Hanssmann, H.: The quasi-periodic center saddle bifurcation. J. Differ. Equ. 142(2), 305–370 (1998)
    • 12. Li, Y., Yi, Y.: A quasi-periodic Poincaré’s theorem. Math. Annalen 326, 649–690 (2003)
    • 13. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differ. Equ. 263, 3894–3927...
    • 14. Moser, J.: Combination tones for Duffings equation. Comm. Pure Appl. Math. 18, 167–181 (1965)
    • 15. Stoker, J.J.: Nonlinear vibrations in mechanical and electrical systems. Interscience Publisher, New York (1950)
    • 16. Ma, Z., Xu, J.: Response solutions for completely degenerate oscillators under arbitrary quasi-periodic perturbations. Comm. Math. Phys....
    • 17. Meyer, K.R., Palacián, J.F., Yanguas, P.: Geometric averaging of Hamiltonian systems: periodic solutions, stability, and KAM Tori. SIAM...
    • 18. Newton, P.: The n-vortex Problem. Springer-Verlag, New York (2001)
    • 19. Palacián, J.F., Sayas, F., Yanguas, P.: Regular and singular reductions in the spatial three-body problem. Qual. Theory Dyn. Syst. 12,...
    • 20. Qin, D., Tang, X., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth. J. Differ. Equ....
    • 21. Si, W., Yi, Y.: Responsive solutions in degenerate oscillators under degenerate perturbations. Anna. Heri Poincaré 23(1), 333–360 (2022)
    • 22. Si, W., Xu, L., Yi, Y.: Response solutions in singularity perturbed, quasi-periodically forced nonlinear osillators. J. Nonl. Sci. 33,...
    • 23. Treshchev, D.V.: The mechanism of destruciton of resonant tori of Hamiltonian systems. Math. USSR Sb. 68, 181–203 (1991)
    • 24. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Amer. Math. Soc. 369(6), 4251–4274...
    • 25. Xu, L., Li, Y., Yi, Y.: Poincaré-Treshchev mechanism in multi-scale, nearly integrable Hamiltonian systems. J. Nonl. Sci. 28(1), 337–369...
    • 26. Xu, L., Yi, Y.: Lower dimension tori of general types in multi-scale Hamitonian systems. Nonlinearity 32, 2226–2245 (2019)
    • 27. Xu, J., You, J., Qiu, Q.: Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–387 (1997)
    • 28. Xu, X., Si, W., Si, J.: Stoker’s problem for quasi-periodically forced reversible systems with multidimensional Liouvillean frequency....
    • 29. You, J.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems. Com. Math. Phys. 192, 145–168 (1998)
    • 30. You, J.: Perturbations of lower dimensional tori for Hamiltonian systems. J. Differ. Equ. 152, 1–29 (1999)
    • 31. Zhang, J., Zhou, H., Mi, H.: Multiplicity of semiclassical solutions for a class of nonliear Hamiltonian elliptic system. Adv. Nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno