Ir al contenido

Documat


Existence of Response Solutions to Quasi-Periodically Forced Equation with Damping

  • Xingkui Shu [1] ; Fenfen Wang [1] ; Lian Yang [1]
    1. [1] Sichuan Normal University

      Sichuan Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the quasi-periodically forced equation with strong damping.

      We are devoted to studying the existence of response solutions, which are the quasiperiodic solutions with the same frequency as the forcing. Precisely, we obtain the corresponding solutions in the analytic and highly differentiable setting by contraction mapping principle. Note that, our method does not involve any arithmetic conditions on the forcing frequency ω. Moreover, we extend our results from 1-dimensional case to n-dimension. In the process of proof, we reformulate the existence of response solutions for the original system as a fixed point problem in some suitable Banach space.

  • Referencias bibliográficas
    • 1. Adams, R.A., Fournier, J.J.: Sobolev Spaces, vol. 140, 2nd edn. Elsevier, Amsterdam (2003)
    • 2. Arnol’d, V.I.: Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation...
    • 3. Broer, B.: Quasi-Periodic Motions in Families of Dynamical Systems. Springer, Berlin (1996)
    • 4. Cheng, H., de la Llave, R., Wang, F.: Response solutions to the quasi-periodically forced systems with degenerate equilibrium: a simple...
    • 5. de la Llave, R.: A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities....
    • 6. de la Llave, R., Sire, Y.: An a posteriori kam theorem for whiskered tori in Hamiltonian partial differential equations with applications...
    • 7. Gentile, G., Bartuccelli, M.V., Deane, J.H.: Quasiperiodic attractors, borel summability and the bryuno condition for strongly dissipative...
    • 8. Gentile, G., Vaia, F.: Response solutions for strongly dissipative quasi-periodically forced systems with arbitrary nonlinearities and...
    • 9. Moser, J.: Combination tones for duffing’s equation. Commun. Pure Appl. Math. 18(1–2), 167–181 (1965)
    • 10. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 174, 136–176 (1967)
    • 11. Taylor, M.E.: Partial Differential Equations III. Nonlinear equations, vol. 117, 2nd edn. Springer, New York (2011)
    • 12. Valls, C.: Existence of quasi-periodic solutions for elliptic equations on a cylindrical domain. Comment. Math. Helv. 81(4), 783–800 (2006)
    • 13. Wang, F., de la Llave, R.: Response solutions to quasi-periodically forced systems, even to possibly illposed pdes, with strong dissipation...
    • 14. Wang, G., Zhu, S.: Dimension of attractor for damped sine-Gordon equation with Neumann or periodic boundary conditions. Arch. Math. (Basel)...
    • 15. Wang, G., Zhu, S.: Dimension of the global attractor for the discretized damped sine-Gordon equation. Appl. Math. Comput. 117(2–3), 257–265...
    • 16. Xiaodan, X., de la Llave, R., Wang, F.: The existence of solutions for nonlinear elliptic equations: simple proofs and extensions of a...
    • 17. Zehnder, E.: Generalized implicit function theorems with applications to some small divisor problems I. Comm. Pure Appl. Math. 28, 91–140...
    • 18. Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: Global existence and uniform stabilization of a generalized dissipative Klein–Gordon equation...
    • 19. Zhang, Z., Miao, X.: Global existence and uniform decay for wave equation with dissipative term and boundary damping. Comput. Math. Appl....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno