Ir al contenido

Documat


Homological Data on the Periodic Structure of Self-Maps on Wedge Sums

  • Marcos J. González [2] ; Víctor F. Sirvent [1] ; Richard Urzúa [1]
    1. [1] Universidad Católica del Norte

      Universidad Católica del Norte

      Antofagasta, Chile

    2. [2] Universidad Simón Bolívar
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this article, we study the periodic points for continuous self-maps on a wedge sum of topological manifolds, exhibiting a particular combinatorial structure. We compute explicitly the Lefschetz numbers, the Dold coefficients and consider its set of algebraic periods. Moreover, we study the special case of maps on a wedge sum of tori, and show some of the homological obstructions present in defining these maps.

  • Referencias bibliográficas
    • 1. Alsedà, L., Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, vol....
    • 2. Apostol, T.M.: Introduction to Analytic Number Theory. Springer-Verlag, New York (1976)
    • 3. Babenko, I.K., Bogatyi, S.A.: The behaviour of the index of periodic points under iterations of a mapping. Math. USSR Izv. 38, 1–26 (1992)
    • 4. Barge, M.M., Walker, R.B.: Periodic point free maps of tori which have rotation sets with interior. Nonlinearity 6, 481–489 (1993)
    • 5. Berrizbeitia, P., Sirvent, V.F.: On the Lefschetz zeta function for quasi-unipotent maps on the ndimensional torus. J. Differ. Equ. Appl....
    • 6. Berrizbeitia, P., González, M.J., Mendoza, A., Sirvent, V.F.: On the Lefschetz zeta function for quasiunipotent maps on then-dimensional...
    • 7. Berrizbeitia, P., González, M.J., Sirvent, V.F.: On the Lefschetz zeta function for a class of toral maps. Qual. Theory Dyn. Syst. 20,...
    • 8. Brown, R.F.: The Lefschetz Fixed Point Theorem. Scott, Foresman and Company, Glenview (1971)
    • 9. Byszewski, J., Graff, G., Ward, T.: Dold sequences, periodic points, and dynamics. Bull. Lond. Math. Soc. 53(5), 1263–1298 (2021)
    • 10. Dold, A.: Fixed point indices of iterated maps. Invent. math. 74, 419–435 (1983)
    • 11. Ferrario, D.: Generalized Lefschetz numbers of pushout maps. Topol. Appl. 68, 67–81 (1996)
    • 12. Franks, J.: Homology and Dynamical Systems. CBMS Regional Conf. Ser. in Math, 49, AMS(1982)
    • 13. Graff, G., Kaczkowska, A., Nowak-Przygodzki, P., Signerska, J.: Lefschetz periodic point free selfmaps of compact manifolds. Topol. Appl....
    • 14. Graff, G., Marzantowicz, W., Michalak, L.P.: Dold coefficients of quasi-unipotent homeomorphisms of orientable surfaces. Qual. Theory...
    • 15. Guirao, J.L.G., Llibre, J.: On the Lefschetz periodic point free continuous self-maps on connected compact manifolds. Topol. Appl. 158,...
    • 16. Guirao, J.L.G., Llibre, J.: On the periods of a continuous self-map on a graph. Comput. Appl. Math. 38(78), 6 (2019)
    • 17. Guirao, J.L.G., Llibre, J., Gao, W.: Topological entropy of continuous self-maps on a graph. Comput. Appl. Math. 38(154), 10 (2019)
    • 18. Handel, M.: Periodic point free homeomorphism of T2. Proc. Am. Math. Soc. 107, 511–515 (1989)
    • 19. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
    • 20. Jäger, T.: Periodic point free homeomorphisms of the open annulus: from skew products to non-fibred maps. Proc. Am. Math. Soc. 138, 1751–1764...
    • 21. Jezierski, J., Marzantowicz, W.: Homotopy Methods in Topological Fixed and Periodic Points Theory. Springer Verlag, Berlin (2006)
    • 22. Jiang, B.: Estimation of the number of periodic orbits. Pac. J. Math. 172, 151–185 (1996)
    • 23. Kocsard, A.: Periodic point free homeomorphisms and irrational rotation factors. Ergodic Theory Dyn. Syst. 41, 2946–2982 (2021)
    • 24. Lefschetz, S.: Intersections and transformations of complexes and manifolds. Trans. Am. Math. Soc. 28, 1–49 (1926)
    • 25. Llibre, J.: Lefschetz numbers for periodic points. Contemp. Math. 152, 215–227 (1993)
    • 26. Llibre, J.: Periodic point free continuous self-maps on graphs and surfaces. Topol. Appl. 159, 2228– 2231 (2012)
    • 27. Llibre, J., Misiurewicz, M.: Horseshoes, entropy and periods for graphs maps. Topology 52, 649–664 (1993)
    • 28. Llibre, J., Sá, A.: Periods for continuous self-maps of a bouquet of circles. R Acad. Sci. Paris. Sér I Maths. 318, 1035–1040 (1994)
    • 29. Llibre, J., Sirvent, V.F.: Partially periodic point free self-maps on surfaces, graphs, wedge sums and products of spheres. J. Differ....
    • 30. Llibre, J., Sirvent, V.F.: A survey on the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on some closed manifolds....
    • 31. Llibre, J., Sirvent, V.F.: Entropy and periods for continuous graph maps. Comput. Appl. Math. 40, 11 (2021)
    • 32. Marzantowicz, W., Przygodzki, P.: Finding periodic points of a map by use of a k-adic expansion. Discrete Contin. Dyn. Syst. 5, 495–514...
    • 33. Sirvent, V.F.: On partially periodic point free self-maps on the wedge sums of spheres. J. Differ. Equ. Appl. 29, 19–31 (2023)
    • 34. Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno