Ir al contenido

Documat


Complex Dynamics in a Discrete Eco-Epidemiological Model with Fatal Disease in the Prey

  • Ceyu Lei [1] ; Xiaoling Han [1]
    1. [1] Northwest Normal University

      Northwest Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the complex dynamics of a discrete-time predator–prey model with fatal disease in the prey. In theory, we obtain the preconditions for the existence of the equilibrium point and further derive sufficient conditions for the persistence and global stability of the coexistence equilibrium point. Additionally, we identify the existence of flip bifurcation and Neimark-Sacker bifurcation. Through numerical simulation, it is found that the dynamic behavior of the discrete model is extremely complex: (i) The increase in the birth rate of susceptible prey adversely affects the stability of the equilibrium point, but it promotes periodic behavior; (ii) Higher infection rates result in a decrease in the number of susceptible prey and predator; (iii) When the predation rate of the infected prey is high, the number of susceptible prey and predator increases, leading to the gradual disappearance of the infected prey.

      These findings may enrich the dynamic characteristics of the eco-epidemiological model.

  • Referencias bibliográficas
    • 1. Plank, M.: Hamilton structure for n-dimensional Lotka-Volterra equation. J. Math. Phys. 36, 3520– 3534 (1995)
    • 2. Ren, J.L., Li, X.P.: Bifurcations in a seasonally forced predator-prey model with generalized Holling type IV functional response. Internat....
    • 3. Verma, M., Misra, A.K.: Modeling the effect of prey refuge on a ratio-dependent predator-prey system with the Allee effect. Bull. Math....
    • 4. Anderson, R.M., May, R.M.: The Invasion, persistence and spread of infectious diseases within animal and plant communities. Trans. Roy....
    • 5. Meng, X.Y., Qin, N.N., Huo, H.F.: Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. J. Biol....
    • 6. Hilker, F.M.: Schmitz K, Disease-induced stabilization of predator-prey oscillations. J. Theoret. Biol. 255, 299–306 (2008)
    • 7. Debadatta, A., Nandadulal, B., Robert, H.: Chaos in delay-induced Leslie-Gower prey-predatorparasite model and its control through prey...
    • 8. David, G., Qamar, J.A.K., Fatma, A.A.K.: Eco-epidemiological model with fatal disease in the prey. Nonlinear Anal. Real. World Appl. 53,...
    • 9. Bate, A.M., Hilker, F.M.: Complex dynamics in an eco-epidemiological model. Bull. Math. Biol. 75, 2059–2078 (2013)
    • 10. Oliveira, N.M., Hilker, F.M.: Modelling disease introduction as biological control of invasive predators to preserve endangered prey....
    • 11. Saha, S., Maiti, A., Samanta, G.P.: A Michaelis-Menten predator-prey model with strong Allee effect and disease in prey incorporating...
    • 12. Saha, S., Samanta, G.P.: Analysis of a predator-prey model with herd behaviour and disease in prey incorporating prey refuge. Int. J....
    • 13. Sharma, S., Samanta, G.P.: Analysis of a two prey one predator system with disease in the first prey population. Int. J. Dyn. Control...
    • 14. Sharma, S., Samanta, G.P.A.: Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge. Chaos Solitons Fractals...
    • 15. Mondal, A., Pal, A.K., Samanta, G.P.: On the dynamics of evolutionary Leslie-Gower predator-prey eco-epidemiological model with disease...
    • 16. Samanta, G.: Deterministic. Stochastic and Thermodynamic Modelling of some Interacting Species. Springer, Singapore (2021)
    • 17. Xiao, Y.N., Bosch, F.V.D.: The dynamics of an eco-epidemic model with biological control. Ecol. Modelling 168, 203–214 (2003)
    • 18. Tan, Y.P., Cai, Y.L., Yao, R.X., et al.: Complex dynamics in an eco-epidemiological model with the cost of anti-predator behaviors. Nonlinear...
    • 19. AlSharawi, Z., Pal, N., Chattopadhyay, J.: The role of vigilance on a discrete-time predator-prey model. Discrete Contin. Dyn. Syst. Ser....
    • 20. Han, X.L., Lei, C.Y.: Bifurcation and Turing instability analysis for a space- and time-discrete predatorprey system with Smith growth...
    • 21. Wang, J., Cai, Y.L., et al.: The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge. Chaos...
    • 22. Huang, J.C., Xiao, D.M.: Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response. Acta...
    • 23. Nicholas, F.B.: Essential Mathematical Biology. Springer, London (2003)
    • 24. Abdul, K., Tarek, F.I., Abeer, M.A.: Dynamical analysis of discrete-time two-predators one-prey LotkaVolterra model. Mathematics 10, 4015...
    • 25. Wen, G.L.: Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys. Rev. E 75, 026201 (2005)
    • 26. Wen, G.L., Chen, S.J., Jin, Q.T.: A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno