Ir al contenido

Documat


Isocanted cube: the lower Lebesgue volumes, incidence numbers and symmetries of this d–dimensional tile

    1. [1] Departamento de Álgebra, Geometrı́a y Topologı́a, Facultad de Matemáticas Universidad Complutense, 28040 Madrid, Spain
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 40, Nº 1, 2025, págs. 1-26
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.40.1.1
  • Enlaces
  • Resumen
    • Let d ≥ 2. In this paper we prove that Id(ℓ, a) fills Rd face–to–face by translations. We prove that the symmetry group of Id(ℓ, a) contains the product of cyclic groups Cd × C2 as a subgroup. We compute the Lebesgue j–volume (i.e., the sum of the Lebesgue j–measures of the j–faces) of Id(ℓ, a), for 1 ≤ j < d. We compute the incidence numbers (as defined by Grünbaum) of the faces of Id(ℓ, a).

  • Referencias bibliográficas
    • R.M. Adin, A new cubical h-vector, in “Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics” (New Brunswick,...
    • M. Alexander, M. Fradelizi, L.C. Garcı́a-Lirola, A. Zvavitch, Geometry and volume product of finite dimensional Lipschitz–free spaces, J....
    • A.D. Alexandrov, “Convex polyhedra”, Springer-Verlag, Berlin, 2005.
    • M. Beck, S. Robins, “Computing the continuous discretely. Integer–point enumeration in Polyhedra”, Springer, New York, 2007.
    • L.J. Billera, A. Björner, Face numbers of polytopes and complexes, Chapter 17 in [19] in this list.
    • T. Bisztriczky, P. McMullen, R. Schneider, I. Weiss (eds.), “Polytopes: abstract, convex and computational”, NATO Adv. Sci. Inst. Ser. C:...
    • G. Blind, R. Blind, The cubical d-polytopes with fewer than 2d+1 vertices, Discrete Comput. Geom. 13 (3-4) (1995), 321 – 345. doi.org/10.1007/BF02574048.
    • G. Blind, R. Blind, The almost simple cubical polytopes, Discrete Math. 184 (1998), 25 – 48. doi.org/10.1016/s0012-365x(97)00159-3
    • V. Boltyanski, H. Martini, P.S. Soltan, “Excursions into combinatorial geometry”, Springer-Verlag, Berlin, 1997.
    • R.C. Bose, A note on Fisher’s inequality for balanced incomplete block designs, Ann. Math. Statistics 20 (1949), 619 – 620. doi.org/10.1214/aoms/1177729958.
    • R.C. Bose, D.M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced dessigns, Ann. Math. Statist....
    • N. Carlini, D. Paleka, K. (Dj) Dvijotham, T. Steinke, J. Hayase, A. Feder Cooper, K. Lee, M. Jagielski, M. Nasr, A. Conmy, I. Yona, E. Wallace,...
    • H.M.S. Coxeter, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. (9) 41 (1962), 137 – 156.
    • P.R. Cromwell, “Polyhedra”, Cambridge Univ. Press, Cambridge, 1997.
    • A.M. Dall, “Matroids: h-vectors, zonotopes and Lawrence polytopes”, Thesis, U. Politècnica de Catalunya, 2015.
    • M. Deza, V. Grishukhin, Voronoi’s conjecture and space tiling zonotopes, Mathematika 51 (2004), 1 – 10.
    • R.M. Erdahl, Zonotopes, dicings, and Voronoi’s conjecture on parallelohedra, European J. Combin. 20 (1999), 527 – 549.
    • R.J. Gardner, “Geometric tomography”, Encyclopedia Math. Appl., 58, Cambridge University Press, Cambridge, 1995.
    • J.E. Goodman, J. O’Rourke, C.D. Tóth (eds.), “Handbook of discrete and computational geometry”, Third edition, Discrete Math. Appl. (Boca...
    • E. Gover, N. Krikorian, Determinants and the volumes of parallelotopes and zonotopes, Linear Algebra Appl. 433 (2010), 28 – 40. doi.org/10.1016/j.laa.2010.01.031.
    • P. Gritzmann, V. Klee, Computational convexity, Chapter 36 in [19] in this list.
    • P.M. Gruber, J.M. Wills (Eds.), ”Convexity and its applications”, Birkhäuser Verlag, Basel-Boston, Mass., 1983.
    • B. Grünbaum, “Convex polytopes”, Second edition, Grad. Texts in Math., 221, Springer-Verlag, New York, 2003.
    • M. Henk, J. Richter–Gebert, G.M. Ziegler, Basic properties of convex polytopes, Chapter 15 in [19] in this list.
    • G. Ivanov, Tight frames and related geometric problems, Canad. Math. Bull. 64 (4) (2021), 942 – 963.
    • W. Jockusch, The lower and upper bound problems for cubical polytopes, Discrete Comput. Geom. 9 (2) (1993), 159 – 163. doi.org/10.1007/BF02189315.
    • A. Joós, Z. Lángi, Isoperimetric problems for zonotopes, Mathematika 69 (2) (2023), 508 – 534.
    • P. McMullen, On zonotopes, Trans. Amer. Math. Soc. 159 (1971), 91 – 109.
    • P. McMullen, Space tiling zonotopes, Mathematika 22 (1975), 202 – 211.
    • P. McMullen, Convex bodies which tile space by translation, Mathematika 27 (1980), 113 – 121.
    • P. McMullen, Acknowledgement of priority: “Convex bodies which tile space by translation”, Mathematika 28 (2) (1981), 191.
    • P. Mürner, Translative Parkettierungspolyeder und Zerlegungsgleichheit, Elem. Math. 30 (1975), 25 – 27.
    • M.J. de la Puente, P.L. Claverı́a, Isocanted alcoved polytopes, Appl. Math. 65 (6) (2020), 703 – 726.
    • M.J. de la Puente, P.L. Claverı́a, The volume of an isocanted cube is a determinant, Linear and Multilinear Algebra (03 Jul 2024) doi.org/10.1080/03081087.2024.2368240.
    • S.A. Robertson, Polytopes and symmetry, London Math. Soc. Lecture Note Ser., 90, Cambridge University Press, Cambridge, 1984.
    • R. Schneider, “Convex bodies: the Brunn–Minkowski theory”, Encyclopedia Math. Appl., 44, Cambridge University Press, Cambridge, 1993.
    • E. Schulte, Symmetry of polytopes and polyhedra, Chapter 18 in [19] in this list.
    • M. Senechal (ed.) “Shaping space”, Exploring polyhedra in nature, art, and the geometrical imagination, Springer, New York, 2013.
    • G.C. Shephard, Combinatorial properties of associated zonotopes, Canadian J. Math. 26 (1974), 302 – 321.
    • V. Soltan, “Lectures on convex sets”, Seocnd edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020.
    • A.C. Thompson, “Minkowski geometry”, Encyclopedia Math. Appl., 63, Cambridge University Press, Cambridge, 1996.
    • F. Vallentin, A note on space tiling zonotopes, arXiv:math/0402053, 2004.
    • R. Webster, “Convexity”, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1994.
    • G.M. Ziegler, “Lectures on polytopes”, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995.
    • G.M. Ziegler, Convex polytopes: extremal constructions and f -vector shapes, in “Geometric combinatorics”, IAS/Park City Math. Ser., 13, American...
    • C. Zong, “Strange phenomena in convex and discrete geometry”, Universitext, Springer-Verlag, New York, 1996.
    • C. Zong, What is known about unit cubes, Bull. Amer. Math. Soc. (N.S.) 42 (2) (2005), 181 – 211.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno