Ir al contenido

Documat


A study onW9-curvature tensor within the frameworkof Lorentzian para-Sasakian manifold

  • G.P. Singh [1] ; S.S. Mishra [1] ; P. Sharma [1]
    1. [1] Department of Mathematics and Statistics Deen Dayal Upadhyaya Gorakhpur University Gorakhpur 273009 (U.P.), India
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 40, Nº 1, 2025, págs. 43-56
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.40.1.43
  • Enlaces
  • Resumen
    • This article focuses on the study of Lorentzian para-Sasakian manifolds Mn . It demonstrates that a W9-semisymmetric Lorentzian para-Sasakian manifold is a W9-flat manifold. Additionally, we explore Lorentzian para-Sasakian manifolds that satisfy the ζ-W9-flat condition, revealing that they represent a special type of η-Einstein manifold. Furthermore, it is shown that a W9-flat Lorentzian para-Sasakian manifold is a flat manifold. We also investigate Lorentzian para-Sasakian manifolds that meet W9-recurrent and ϕ-W9-semisymmetric conditions, presenting several significant results from this analysis. At last, we explore η-Ricci Solitons on Lorentzian para-Sasakian manifold satisfying W9(ζ, F1 ) · S = 0.

  • Referencias bibliográficas
    • W. Batat, M. Brozos-Vázquez, E. Garcı́a-Rı́o, S. Gavino-Fernández, Ricci solitons on Lorentzian manifolds with large isometry groups, Bull....
    • A.M. Blaga, Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (1) (2015), 1 – 13.
    • A.M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2) (2016), 489 – 496.
    • M. Brozos-Vázquez, G. Calvaruso, E. Garcı́a-Rı́o, S. Gavino-Fernández, Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J....
    • C. Calin, M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f -Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (3)...
    • T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B...
    • T. Chave, G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta 69 (3) (1996), 344 – 347.
    • J.T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2) (2009), 205 – 212.
    • U.C. De, K. Matsumoto, A.A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina 3 (1999), 149 – 158.
    • U.C. De, A.A. Shaikh, On 3-dimensional LP-Sasakian manifolds, Soochow J. Math. 26 (2000), 359 – 368.
    • S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55(103) (1) (2012), 41 – 50.
    • S. Deshmukh, H. Alodan, H. Al-Sodais, A note on Ricci solitons, Balkan J. Geom. Appl. 16 (1) (2011), 48 – 55.
    • D.H. Friedan, Nonlinear models in 2+ε dimensions, Ann. Phys. 163 (2) (1985), 318 – 419.
    • R.S. Hamilton, The Ricci flow on surfaces, in “Mathematics and general relativity (Santa Cruz, CA, 1986)”, Contemp. Math. 71, American Mathematical...
    • G. Ingalahalli, S.C. Anil, C.S. Bagewadi, A study on W8 -curvature tensor in Kenmotsu manifolds, International Journal of Mathematics And...
    • T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (4) (1993), 301 – 307.
    • K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151 – 156.
    • K. Matsumoto, I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.) 47 (1988), 189 – 197.
    • K. Matsumoto, I. Mihai, R. Roşca, ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc. 32 (1995),...
    • I. Mihai, R. Roşca, On Lorentzian P -Sasakian manifolds in “Classical analysis (Kazimierz Dolny, 1991)”, World Scientific Publishing Co.,...
    • I. Mihai, A.A. Shaikh, U.C. De, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences 6 (1999), 1 – 13. Rendiconti Sem. Mat. Messina,...
    • A.K. Mishra, P. Prajapati, Rajan, G.P. Singh, On M -projective curvature tensor of Lorentzian β-Kenmotsu manifold, Bull. Transilv. Univ. Braşov...
    • K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata 147 (2010), 313 – 322.
    • C. Özgür, ϕ-conformally flat Lorentzian para-Sasakian manifolds, Rad. Mat. 12 (2003), 99 – 106.
    • P. Prajapati, G.P. Singh, Rajan, A.K. Mishra, A study on W8 - curvature tensor in Lorentzian β-Kenmotsu manifold, J. Rajasthan Acad. Phys....
    • D.G. Prakasha, B.S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom. 108 (2) (2017), 383 – 392.
    • Rajan, G.P. Singh, P. Prajapati, A.K. Mishra, W8 -Curvature Tensor in Lorentzian α-Sasakian Manifolds, Turkish Journal of Computer and Mathematics...
    • G.P. Singh, A.K. Mishra, P. Prajapati, Rajan, A Study on W1 - Curvature Tensor in LP -Kenmotsu Manifolds, Journal of Propulsion Technology...
    • G.P. Singh, A.K. Mishra, Rajan, P. Prajapati, A.P. Tiwari, A study on W8 -curvature tensor in ϵ-Kenmotsu manifolds, GANITA 72 (2) (2022),...
    • G.P. Singh, P. Prajapati, A.K. Mishra, Rajan, Generalized B-curvature tensor within the framework of Lorentzian β-Kenmotsu manifold, Int....
    • G.P. Singh, R. Rajan, A.K. Mishra, P. Prajapati, W8 -Curvature tensor in generalized Sasakian-space-forms, Ratio Mathematica 48 (2023), 51...
    • G.P. Singh, S.K. Srivastava, On Einstein Nearly Kenmotsu Manifolds, International Journal Of Mathematics Research 8 (1) (2016), 19 – 24.
    • G.P. Singh, S.K. Srivastava, On Kenmotsu Manifold With Quarter Symmetric Non Metric ϕ-Connection, International Journal of Pure and Applied...
    • M.M. Tripathi, P. Gupta, τ -curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Studies 4 (1) (2011), 117 – 129.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno