Ir al contenido

Documat


K-flatness in Grothendieck categories: application to quasi-coherent sheaves

  • Estrada, Sergio [1] Árbol académico ; Odabaşi, Sinem [1] ; Gillespie, James [2]
    1. [1] Universidad de Murcia

      Universidad de Murcia

      Murcia, España

    2. [2] Ramapo College of New Jersey School of Theoretical and Applied Science, 505 Ramapo Valley Road, Mahwah, NJ, 07430, USA
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 2, 2025, págs. 435-454
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00439-7
  • Enlaces
  • Resumen
    • Let (\mathcal {G},\otimes ) be any closed symmetric monoidal Grothendieck category. We show that K-flat covers exist universally in the category of chain complexes and that the Verdier quotient of K(\mathcal {G}) by the K-flat complexes is always a well generated triangulated category. Under the further assumption that \mathcal {G} has a set of \otimes -flat generators we can show more: (i) The category is in recollement with the \otimes -pure derived category and the usual derived category, and (ii) The usual derived category is the homotopy category of a cofibrantly generated and monoidal model structure whose cofibrant objects are precisely the K-flat complexes. We also give a condition guaranteeing that the right orthogonal to K-flat is precisely the acyclic complexes of \otimes-pure injectives. We show this condition holds for quasi-coherent sheaves over a quasi-compact and semiseparated scheme.

  • Referencias bibliográficas
    • Adamek, J., Rosicky, J.: Locally presentable and accessible categories London Mathematical Society lecture note series, p. 189. Cambridge...
    • Bazzoni, S., Cortés-Izurdiaga, M., Estrada, S.: Periodic modules and acyclic complexes. Algebr. Represent. Theory 23(5), 1861–1883 (2020)
    • Bühler, T.: Exact Categories. Expo. Math. 28(1), 1–69 (2010)
    • Lars Winther Christensen: Sergio Estrada, and Peder Thompson, The stable category of Gorenstein flat sheaves on a Noetherian scheme. Proc....
    • Emmanouil, I.: On pure acyclic complexes. J. Algebra 465, 190–213 (2016)
    • Emmanouil, I.: On the relation between K-flatness and K-projectivity. J. Algebra 517, 320–335 (2019)
    • Emmanouil, I.: K-flatness and orthogonality in homotopy categories. Isr. J. Math. (2022).
    • Emmanouil, Ioannis, Kaperonis, Ilias: On K-absolutely pure complexes, (2022) preprint at https://users.uoa.gr/~emmanoui/research.html
    • Estrada, S., Gillespie, J., Odabaşı, S.: Pure exact structures and the pure derived category of a scheme. Math. Proc. Cambridge Philos. Soc....
    • Estrada, S., Pedro, A., Guil, A., Sinem, O.: Phantom covering ideals in categories without enough projective morphisms. J. Algeb. 562, 94–114...
    • Gillespie, J.: The flat model structure on Ch(R). Trans. Am. Math. Soc. 356(8), 3369–3390 (2004)
    • Gillespie, J.: Cotorsion pairs and degreewise homological model structures. Homol. Homot. Appl. 10(1), 283–304 (2008)
    • Gillespie, J.: Model structures on exact categories. J. Pure Appl. Algeb. 215(12), 2892–2902 (2011)
    • Gillespie, J.: The derived category with respect to a generator. Ann. Mat. Pura Appl. 195(4), 371–402 (2016)
    • Gillespie, J.: Gorenstein complexes and recollements from cotorsion pairs. Adv. Math. 291, 859–911 (2016)
    • Gillespie, J.: On Ding injective, Ding projective and Ding flat modules and complexes. Rocky Mountain J. Math. 47(8), 2641–2673 (2017)
    • Gillespie, J.: K-flat complexes and derived categories. Bull. Lond. Math. Soc. 55(1), 119–136 (2023)
    • Gillespie, J.: The homotopy category of acyclic complexes of pure-projective modules. Forum Math. 35(2), 507–521 (2023)
    • Hartshorne, R., Geometry, A.: Grauate Texts in Mathematics, vol. 52. Springer-Verlag, New York (1977)
    • Hovey, M.: Cotorsion pairs, model category structures, and representation theory. Math. Zeitsch. 241, 553–592 (2002)
    • Lane, S.M.: Homology, Die Grundlehren der mathematischen Wissenschaften, vol.114, Springer-Verlag, (1963)
    • Murfet, D.: The mock homotopy category of projectives and Grothendieck duality, PhD thesis, Australian National University, (2007)
    • Positselski, L., Št’ovíček, J.: Flat quasi-coherent sheaves as direct limits, and quasi-coherent cotorsion periodicity, arXiv:2212.09639v1
    • Quillen, D.: Homotopical algebra, SLNM vol. 43, Springer-Verlag, (1967)
    • Saorín, M., Št’ovíček, J.: On exact categories and applications to triangulated adjoints and model structures. Adv. Math. 228(2), 968–1007...
    • Št’ovíček, Jan: On purity and applications to coderived and singularity categories, (2014), arXiv: 1412.1615
    • Spaltenstein, N.: Resolutions of unbounded complexes. Compos. Math. 65(2), 121–154 (1988)
    • Weibel, C.A.: An Introduction to Homological Algebra Cambridge Studies in Advanced Mathematics. Cambridge University Press: Cambridge. pp...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno