Ir al contenido

Documat


Commuting Toeplitz and small Hankel operators on the Bergman space

  • Wang, Jiawei [1] ; Zhang, Jie [1] ; Zhao, Xianfeng [1]
    1. [1] Chongqing University

      Chongqing University

      China

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 2, 2025, págs. 417-433
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00438-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper shows that on the Bergman space of the open unit disk, the Toeplitz operator T_{{\overline{p}}+\varphi } and the small Hankel operator \Gamma _\psi commute only in the obvious cases, where \varphi and \psi are both bounded analytic functions, and p is an analytic polynomial.

  • Referencias bibliográficas
    • Axler, S.: Bergman spaces and their operators, Surveys of some recent results in operator theory, Vol. I, 1-50, Pitman Res. Notes Math. Ser.,...
    • Axler, S., Čučković, Ž: Commuting Toeplitz operators with harmonic symbols. Integr. Equ. Oper. Theory 14, 1–12 (1991)
    • Bauer, W., Lee, Y.J.: Commuting Toeplitz operators on the Segal-Bargmann space. J. Funct. Anal. 260, 460–489 (2011)
    • Bauer, W., Choe, B.R., Koo, H.: Commuting Toeplitz operators with pluriharmonic symbols on the Fock space. J. Funct. Anal. 268, 3017–3060...
    • Brown, A., Halmos, P.R.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 1963/64, 213, 89–102
    • Chen, Y.: Commuting Toeplitz operators on the Dirichlet space. J. Math. Anal. Appl. 357, 214–224 (2009)
    • Choe, B.R., Lee, Y.J.: Commuting Toeplitz operators on the harmonic Bergman space. Mich. Math. J. 46, 163–174 (1999)
    • Čučković, Ž, Rao, N.V.: Mellin transform, monomial Symbols, and commuting Toeplitz operators. J. Funct. Anal. 154, 195–214 (1998)
    • Ding, X., Zheng, D.: Commuting Toeplitz operators on the bidisk. J. Funct. Anal. 263, 3333–3357 (2012)
    • Duren, P.: Theory of H^p Spaces. Academic Press, New York (2000)
    • Duren, P., Schuster, A.: Bergman Spaces. American Mathematical Society, Providence, R. I. (2004)
    • Guan, H., Lu, Y.: Algebraic properties of Toeplitz and small Hankel operators on the harmonic Bergman space. Acta Math. Sin. Engl. Ser. 59,...
    • Guo, K., Zheng, D.: Invariant subspaces, quasi-invariant subspaces, and Hankel operators. J. Funct. Anal. 187, 308–342 (2001)
    • Kong, L., Lu, Y.: Commuting Toeplitz operators on the Hardy space of the polydisk. Acta Math. Sin. Engl. Ser. 31, 695–702 (2015)
    • Le, T., Tikaradze, A.: A generalization of the Brown-Halmos theorems for the unit ball. Adv. Math. 404: Paper No. 108411 (2022)
    • Lee, Y.J.: Commuting Toeplitz operators on the Hardy space of the polydisk. Proc. Am. Math. Soc. 138, 189–197 (2010)
    • Lu, Y., Zhang, B.: Commuting Hankel and Toeplitz operators on the Bergman space. Chin. Ann. Math. Ser. A 32, 519–530 (2011)
    • Stroethoff, K., Zheng, D.: Algebraic and spectral properties of dual Toeplitz operators. Trans. Am. Math. Soc. 354, 2495–2520 (2002)
    • Martínez-Avendaño, R.A., Rosenthal, P.: An Introduction to Operators on the Hardy-Hilbert Space. Springer, New York (2007)
    • Yang, J.: Toeplitz and Hankel operators with radial symbols the Bergman space. Appl. Math. Sci. 6, 2865–2869 (2012)
    • Yang, J., Ren, Y.: Commuting Toeplitz and Hankel operators on the weighted Bergman Space. Int. J. Contemp. Math. Sci. 7, 2035–2040 (2012)
    • Yang, J.: Commuting quasihomogeneous Toeplitz operator and Hankel operator on weighted Bergman space. Abstr. Appl. Anal. Article ID: 408168...
    • Zheng, D.: Commuting Toeplitz operators with pluriharmonic symbols. Trans. Am. Math. Soc. 350, 1595–1618 (1998)
    • Zhu, K.: Operator Theory in Function Spaces, 2nd edn, Mathematical Surveys and Monographs, 138, American Mathematical Society (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno