Ir al contenido

Documat


Lorentzian connections with parallel twistor-free torsion

  • Ernst, Igor [1] ; Galaev, Anton S. [2]
    1. [1] Masaryk University

      Masaryk University

      Chequia

    2. [2] Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 2, 2025, págs. 251-271
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00430-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We describe Lorentzian manifolds that admit metric connections with parallel torsion having zero twistorial component and non-zero vectorial component. We also describe Lorentzian manifolds admitting metric connections with closed parallel skew-symmetric torsion.

  • Referencias bibliográficas
    • Agricola, I., Friedrich, Th.: On the holonomy of connections with skew-symmetric torsion. Math. Annal. 328(4), 711–748 (2004)
    • Agricola, I.: Non-integrable geometries, torsion, and holonomy. In: Handbook of pseudo–Riemannian geometry and supersymmetry, IRMA, EMS, 277–346...
    • Agricola, I., Ferreira, C., Friedrich, Th.: The classification of naturally reductive homogeneous spaces in dimensions n 6. Diff. Geom. Appl....
    • Alekseevsky, D., Cortes, V., Galaev, A., Leistner, Th.: Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. 635,...
    • Blau, M., O’Loughlin, M.: Homogeneous plane waves. Nuclear Phys. B 654(1–2), 135–176 (2003)
    • Bohle, C.: Killing spinors on Lorentzian manifolds. J. Geom. Phys. 45, 285–308 (2003)
    • Brozos-Vázquez, M., García-Río, E., Gilkey, P., Nikčević, S., Vázquez-Lorenzo, R.: The geometry of Walker manifolds, Synth. Lect. Math. Stat.,...
    • Calvaruso, G., López, M.C.: Pseudo-Riemannian Homogeneous Structures. Springer, Berlin (2019)
    • Cleyton, R., Moroianu, A., Semmelmann, U.: Metric connections with parallel skew-symmetric torsion. Adv. Math. 378, 107519 (2021)
    • Coley, A., Hervik, S., Papadopoulos, G., Pelavas, N.: Kundt spacetimes. Class. Quantum Grav. 26 no. 10, arc. num. 105016 (2009)
    • Ernst, I., Galaev, A.S.: On Lorentzian connections with parallel skew torsion. Doc. Math. 27, 2333–2383 (2022)
    • Figueroa-O’Farrill, J., Philip, S., Meessen, P.: Homogeneity and plane-wave limits. J. High Energy Phys. 05(05) (2005)
    • Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002)
    • Gadea, P.M., Oubiña, J.A.: Reductive homogeneous pseudo-Riemannian manifolds. Monatsh. Math. 124, 17–34 (1997)
    • Leistner, Th.: Screen bundles of Lorentzian manifolds and some generalisations of pp-waves. J. Geom. Phys. 56(10), 2117–2134 (2006)
    • Leistner, T., Schliebner, D.: Completeness of compact Lorentzian manifolds with abelian holonomy. Math. Annalen 364, 1469–1503 (2016)
    • Meessen, P.: Homogeneous Lorentzian spaces admitting a homogeneous structure of type T1 O T3. J. Geom. Phys. 56, 754–761 (2006)
    • Murcia, Á., Shahbazi, C.S.: Contact metric three manifolds and Lorentzian geometry with torsion in six-dimensional supergravity. J. Geom....
    • Montesinos Amilibia, A.: Degenerate homogeneous structures of type S1 on pseudo-Riemannian manifolds. Rocky Mt. J. Math. 31, 561–579 (2001)
    • Moroianu, A., Pilca, M.: Metric connections with parallel twistor-free torsion. Int. J. Math. 32, arc. num. 2140011 (2021)
    • Strominger, A.: Superstrings with torsion. Nucl. Phys. B 274, 253–284 (1986)
    • Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds. London Mathematical Society Lecture Note Series, Cambridge University...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno