Ir al contenido

Documat


Identifiability and singular locus of secant varieties to Grassmannians

  • Galgano, Vincenzo [1] ; Staffolani, Reynaldo [1]
    1. [1] Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38123, Trento, Italy
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 2, 2025, págs. 227-249
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00429-1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Secant varieties are among the main protagonists in tensor decomposition, whose study involves both pure and applied mathematic areas. Grassmannians are the building blocks for skewsymmetric tensors. Although they are ubiquitous in the literature, the geometry of their secant varieties is not completely understood. In this work we determine the singular locus of the secant variety of lines to a Grassmannian Gr(k, V) using its structure as SL (V)-variety. We solve the problems of identifiability and tangential-identifiability of points in the secant variety: as a consequence, we also determine the second Terracini locus to a Grassmannian.

  • Referencias bibliográficas
    • Abo, H., Ottaviani, G., Peterson, C.: Non-defectivity of Grassmannians of planes. J. Algebraic Geom. 21(1), 1–20 (2009)
    • Arrondo, E., Bernardi, A., Marques, P.M., Mourrain, B., Skew-symmetric tensor decomposition. In: Communications in Contemporary Mathematics...
    • Ballico, E., Bernardi, A., Santarsiero, P.: Terracini locus for three points on a Segre variety. arXiv preprint arXiv:2012.00574 (2020)
    • Ballico, E., Chiantini, L.: On the terracini locus of projective varieties. Milan J. Math. 89(1), 1–17 (2021)
    • Baur, K., Draisma, J., De Graaf, W.: Secant dimensions of minimal orbits: computations and conjectures. Exp. Math. 16(2), 239–250 (2007)
    • Bernardi, A., Carlini, E., Catalisano, M.V., Gimigliano, A., Oneto, A.: The hitchhiker guide to: Secant varieties and tensor decomposition....
    • Bernardi, A., Carusotto, I.: Algebraic geometry tools for the study of entanglement: an application to spin squeezed states. J. Phys. A Math....
    • Bernardi, A., Vanzo, D.: A new class of non-identifiable skew-symmetric tensors. In: Annali di Matematica Pura ed Applicata (1923-) 197(5),...
    • Bidleman, D., Oeding, L.: Restricted Secant Varieties of Grassmannians. In: Collectanea Mathematica (2023)
    • Boralevi, A.: A note on secants of Grassmannians. Rend. Istit. Mat. Univ. Trieste 45, 67–72 (2013)
    • Catalisano, M., Geramita, A., Gimigliano, A.: Secant varieties of Grassmann varieties. Proc. Am. Math. Soc. 133(3), 633–642 (2005)
    • Chiantini, L., Ciliberto, C.: On the dimension of secant varieties. J. Eur. Math. Soc. 12(5), 1267–1291 (2010)
    • Comon, P.: Tensors: a brief introduction. IEEE Signal Process. Mag. 31(3), 44–53 (2014)
    • Fulton, W., Harris, J.: Representation Theory: A First Course. Vol. 129. Springer Science & Business Media (2013)
    • Furukawa, K., Han, K.: On the singular loci of higher secant varieties of Veronese embeddings. preprint arXiv:2111.03254 (2021)
    • Galgano, V.: Identifiability and singular locus of secant varieties to spinor varieties. In: preprint arXiv:2302.05295 (2023)
    • Galuppi, F., Oneto, A.: Secant non-defectivity via collisions of fat points. Adv. Math. 409, 108657 (2022)
    • Han, K.: On singularities of third secant varieties of Veronese embeddings. Linear Algebra Appl. 544, 391–406 (2018)
    • Harris, J.: Algebraic Geometry: A First Course. Vol. 133. Springer Science & Business Media (2013)
    • Kanev, V.: Chordal varieties of Veronese varieties and catalecticant matrices. J. Math. Sci. 94(1), 1114–1125 (1999)
    • Laface, A., Postinghel, E.: Secant Varieties of Segre-Veronese embeddings of (P1)r. Mathematische Annalen 356(4), 1455–1470 (2013)
    • Landsberg, J.M.: Tensors: Geometry and Applications, vol. 128. Graduate Studies in Mathematics. American Mathematical Society, Providence,...
    • Landsberg, J.M., Manivel, L.: Legendrian varieties. Asian J. Math. 11(3), 341–360 (2007)
    • Lim, L.-H.: Tensors in computations. Acta Numer. 30, 555–764 (2021)
    • Manivel, L., Michalek, M.: Secants of minuscule and cominuscule minimal orbits. Linear Algebra Appl. 481, 288–312 (2015)
    • Michalek, M., Oeding, L., Zwiernik, P.: Secant cumulants and toric geometry. Int. Math. Res. Not. 2015(12), 4019–4063 (2015)
    • Ottaviani, G., Reichenbach, P.: Tensor rank and complexity. arXiv preprint, arXiv:2004.01492 (2020)
    • Russo, F.: On the Geometry of Some Special Projective Varieties. Springer International Publishing (2016)
    • Ullery, B.: On the normality of secant varieties. Adv. Math. 288, 631–647 (2016)
    • Vermeire, P.: Some results on secant varieties leading to a geometric flip construction. Compos. Math. 125(3), 263–282 (2001)
    • Zak, F.L.: Tangents and secants of algebraic varieties. Vol. 127. American Mathematical Soc. (1993)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno